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Abstract—Direct Volume Rendering (DVR) using Volumetric Path Tracing (VPT) is a scientific visualization technique that simulates light
transport with objects’ matter using physically-based lighting models. Monte Carlo (MC) path tracing is often used with surface models, yet
its application for volumetric models is difficult due to the complexity of integrating MC light-paths in volumetric media with none or smooth
material boundaries. Moreover, auxiliary geometry-buffers (G-buffers) produced for volumes are typically very noisy, failing to guide image
denoisers relying on that information to preserve image details. This makes existing real-time denoisers, which take noise-free G-buffers
as their input, less effective when denoising VPT images. We propose the necessary modifications to an image-based denoiser previously
used when rendering surface models, and demonstrate effective denoising of VPT images. In particular, our denoising exploits temporal
coherence between frames, without relying on noise-free G-buffers, which has been a common assumption of existing denoisers for
surface-models. Our technique preserves high-frequency details through a weighted recursive least squares that handles heterogeneous
noise for volumetric models. We show for various real data sets that our method improves the visual fidelity and temporal stability of VPT
during classic DVR operations such as camera movements, modifications of the light sources, and editions to the volume transfer function.

Index Terms—Volume rendering, global illumination, path-tracing, participating media, image-space filtering, real-time denoising.

1 INTRODUCTION

ECENT studies evidenced perceptual benefits of applying

more advanced illumination models for 3-D scientific visual-
izations [9]], [[12]], [38]]. Consequently, in the past years, interactive
volume rendering techniques started supporting more advanced
illumination effects [16], [41]]. Direct Volume Rendering (DVR)
using Volumetric Path Tracing (VPT) represents a new trend of
volume rendering algorithms that use more advanced physically-
based lighting models to produce photo-realistic scientific visual-
izations [8], [[10f], [49], [51]. This trend has also been popularized
in medical imaging under the term Cinematic Rendering.

Global illumination models used in DVR are inspired by the
radiative transfer equation [6], the fundamental equation governing
light transport in participating media. Kajiya and Von Herzen [25]]
presented an approximate solution of this equation for its use in
computer graphics. Monte Carlo (MC) path tracing, which is often
used to solve this equation in an unbiased manner, has a unified
theoretical framework that guarantees convergence to the exact
solution. VPT computes DVR images by progressively averaging
large numbers of radiance samples evaluated from randomly chosen
light paths.

The major disadvantage of this algorithm is that generating
high-quality DVR images requires large rendering times or tremen-
dously expensive hardware equipment to achieve near-interactive
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framerates. Otherwise, the rendered images exhibit severe noise
caused by MC integration of the samples. For example, Shih
et al. [54]] presented a parallelized, data-distributed and GPU-
accelerated algorithm for volume rendering with advanced lighting.
In particular, their method featured soft shadows and rendering
on a cluster using up to 128 GPUs. Progressive MC volume
rendering approaches, e.g., Exposure Render [33] or progressive
light volumes [39]], refine pixel colors using MC path tracing and
tend to produce nearly noise-free images only after a few seconds.
Nevertheless, these techniques still generate disturbing flickering
noise while manipulating the camera or the transfer function, as
real-time user interactions force the rendering to integrate only a
reduced number of samples.

As a result, reducing noise and improving the temporal stability
of DVR image sequences remains an open research problem [13].
In computer graphics, denoising for VPT has been explored mainly
for offline production [4]]. Instead, near-interactive or real-time
denoising methods have mostly focused on scenes with surface
models [5] and they have not been explored yet in the context of
real-time DVR with heterogeneous participating media.

In this paper, we introduce new real-time denoising for DVR
image sequences rendered using VPT. Our approach achieves real-
time performance on commodity GPUs while reducing distracting
MC noise and temporal flicker. Our high-level idea is to use image-
space denoising, widely used when rendering surface models,
with the necessary modifications that enable the denoiser to work
effectively with VPT images.

The main contributions of this work are summarized as:

e We successfully introduce image-based denoising of VPT for
real-time DVR. We propose a post-filtering technique that
effectively reduces the noise level of VPT images, given only a
few samples per pixel (spp).

e We extend a temporal denoiser based on recursive least squares
(RLS) into a weighted RLS (wRLS) so that we can better handle
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Figure 1: VPT results generated using the same source volume but during the interactive manipulation of different DVR transfer functions.
Multiple scattering bounces per ray are simulated. Our real-time denoising improves VPT images (MC-DVR with only 2 spp) while
reducing its noise effectively. Offline VPT with 1024 spp, taking minutes to produce a single image, is shown as reference.

the heterogeneous noise of VPT by controlling the denoising
weight assigned to each pixel color.

e We demonstrate that our real-time denoiser improves the
numerical accuracy of rendered images while reducing the
temporal flicker when a user manipulates parameters of cam-
eras, light sources, and volume transfer functions (e.g., [Fig. 1).
In particular, our method relies on neither G-buffers nor any
pre-training.

2 RELATED WORK

The underlying physical assumptions of the various optical models
used for light transport simulation in participating media were
reviewed in Max et al. [43]], [44]. We also refer to Jonsson et al. [23]]
for a comprehensive survey on interactive volume rendering. In
this section, we mainly discuss the existing approaches for global
illumination on volume rendering with a particular emphasis on
interactive and progressive techniques.

2.1

The rendering equation [25]] for participating media can be solved
using path tracing algorithms [37]]. The recent survey by Novak
et al. [46] reviewed the latest advances in MC path tracing
methods to solve the light transport in participating media. Direct
Volume Rendering (DVR) techniques in scientific visualization
have typically employed ray marching algorithms. For instance,
Rezk-Salama [52] proposed an interactive GPU-based MC ray-
casting approach for physically-based volume rendering that used
ray-marching. Ray marching is simple but has several drawbacks.
For example, it tends to be expensive for high-resolution volumes,
and the rendered images can exhibit an unpredictable bias since
high-frequency details can be missed [[13]], [47]..

Improved sampling strategies. An alternative to the ray marching
is delta tracking, which is an importance sampling that determines
free paths according to the probability density function (PDF)
corresponding to the optical depth in the participating medium.
Woodcock tracking [7] is a widely adopted unbiased solution
that adjusts sampling distances to be small enough to sample

Monte Carlo path tracing

dense regions in the volume appropriately. This algorithm has
been revisited in offline rendering for adaptive sampling on
large sparse inhomogeneous media [59]] and further optimized
for film production [35]. Free path sampling with probabilities
not necessarily proportional to the volume transmittance has been
realized using weighted delta tracking approaches [36], [47], [56].
All these techniques help reducing noise in the estimated light
paths for participating media. Our real-time denoising can be
complementary to the underlying sampling techniques.

Progressive MC path tracing. Kroes et al. [33] and Liu et
al. [39]] demonstrated that progressive VPT using GPUs could
achieve interactive frame rates for unbiased volume rendering.
Unfortunately, while progressive VPT can converge to noise-free
images, it comes with the penalty of producing very noisy results
for interactive rendering scenarios or requiring expensive cloud-
based or distributed rendering systems [49], [54]]. We alleviate this
problem of noise in progressive VPT by applying our real-time
denoising as a post-processing.
Image denoising for MC path tracing. Image-space reconstruc-
tion has been widely accepted as a viable alternative to reduce
MC path tracing noise in surface models. A comprehensive survey
on the topic was conducted by Zwicker et al. [[62]. Recently,
Schied et al. [[53]] presented real-time spatiotemporal denoising that
accumulates pixel colors across frames and controls its smoothing
level using the variances of the colors. Mara et al. [42] designed a
real-time denoiser tailored to reducing noise in matte and glossy
surfaces. These techniques are specialized for filtering noisy global
illumination for surface models. The denoising for volumes and
participating media has often been related to production offline
rendering scenarios [4]. Deep learning denoisers have recently
gained much popularity [2], [14]]. For example, Chaitanya et al. [5]
proposed an interactive denoiser with deep learning for MC path
tracing. However, these denoisers for surface models heavily rely
on noise-free G-buffers, often unavailable for volumes, to produce
high-quality denoised images.

In the context of DVR, Kroes et al. [33]] applied a general
noise reduction filter [27] as part of their GPU implementation, but
this general filtering did not succeed in effectively removing MC



variance and temporal flicker. Applying specialized denoising for
surface models (e.g., RLS adaptive denoising [45]]) to VPT can
be ineffective due to the noise in the G-buffer information used to
reconstruct image details. Consequently, we design our denoising
to reduce variance noise and temporal flicker for interactive DVR
using VPT, without relying on the problematic G-buffers. This
allows our technique to produce temporally stable results without
any pre-training for different given types of user interactions.
It differentiates our method from existing denoisers relying on
G-buffers and also from deep-learning-based approaches using
expensive pre-training stages.

2.2

Irradiance caching takes advantage of smoothly varying indirect
illumination and precomputes radiance transfer inside the volume.
In an early work, Kajiya and Von Herzen [25] proposed a
two-pass approach that simulates global illumination effects for
heterogeneous volume datasets. On the first pass, the radiance is
estimated in each voxel and consecutively integrated along view
rays in the second pass. The first pass, however, is time-consuming
and thus not applicable to interactive visualization. Alternatively,
the estimated irradiance can be computed only at a sparse set of
cached points in the volume. For example, Krivanek et al. [30],
[I31]], [32] proposed storing and interpolating direction-dependent
radiance using spherical harmonics (SH). Later, Jarosz et al. [[18]]
extended this approach for participating media. Kronander et
al. [[34] obtained real-time performance for DVR by encoding local
and global volumetric visibility with SHs on a multi-resolution grid.
More recently, Khlebnikov et al. [28]] proposed parallel irradiance
caching with MC path tracing for interactive volume rendering.
While irradiance caching stores and updates precomputed radiance,
our denoising approach does not require any pre-processing.

Irradiance caching: precomputed radiance transfer

2.3 Volumetric photon mapping approaches

Volumetric photon mapping [21]] and progressive extensions [[15]
amortized expensive calculations to solve the volume rendering
integral through caching light-transport. Jarosz et al. introduced a
variation of Woodcock tracking in progressive photon beams [[19],
an extension of photon beams [20] for volumetric photon mapping.
Jonsson et al. [22] realized interactive DVR through photon
mapping by recomputing only the photons that have changed.
However, their photon gathering stage was computationally expen-
sive, leading to low frame rates when the camera moves. Zhang et
al. [61]] proposed a precomputed volume radiance transfer using
precomputed photon maps encoded using basis functions. While
this method allows real-time radiance reconstruction, the photon
map should be regenerated every time the transfer function changes.
To accelerate the photon map generation, Jonsson et al. [24]
identified photons invariant to changes of visual parameters (e.g.,
changes in the transfer function), enabling a further reduction of
the overhead associated with recomputing photon maps. Unlike
MC path tracing, photon mapping typically introduces some bias,
often visible as low-frequency noise.

2.4 Many-light methods

Many-light methods, as photon mapping, are both bidirectional MC
techniques. While photon mapping relies on density estimation and
requires a large number of photons to be traced, many-light methods
require orders of magnitude less light paths, and thus rendering can
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be very efficient. Engelhardt et al. [[11] described a particle tracing
algorithm to create a set of Virtual Point Lights (VPLs) within
participating media and derived a GPU-friendly bias compensation
scheme for high-quality rendering. Weber et al. [57]] applied a
many-light approach using VPLs to interactive volume rendering.
In particular, this technique was tailored for interactive editing
of volume transfer functions, providing immediate updates and
redistribution of the contributions from VPLs. However, interactive
visualization restricts the number of VPLs, and transfer-function
edits are limited to smooth transitions as they require further
redistribution and recomputation of VPLs. Temporal coherence
was improved by progressively updating the positions of VPLs
and refreshing only their incremental contributions. However,
significant changes (e.g., switching to a completely different
transfer function) could cause visible flickering. Our approach
is able to address these changes in the transfer function without
noticeable flicker.

2.5 Diffusion approximations

For the rendering of multiple scattering global illumination effects
in participating media, methods based on the diffusion approxima-
tion [55] are an efficient alternative to MC path tracing. Korner
et al. [29] proposed Flux-Limited Diffusion (FLD), a technique
improving over Classical Diffusion Approximations (CDA) for
heterogeneous media. While CDA methods suffer from non-
physical radiative fluxes in transparent regions, FLD produces
more accurate results than CDA when compared to the path traced
ground truth. Although the proposed FLD solver can converge
faster than MC path tracing or photon mapping, no progressive or
interactive extensions have yet been proposed.

3 THE VOLUME RENDERING INTEGRAL

This section explains the fundamentals of progressive VPT to
obtain MC solutions of the Volume Rendering Integral (VRI).

TABLE 1: Notations for light-matter interactions.

Symbol Description

w direction vector of light propagation

X,y,Z boldface represents 3-D sampling points

X, 0,2 italicized represents distances from 3-D points to the ray
origin (e.g., if the ray origin is at X, then x = 0)

p() probability density function (PDF)

P(z) probability of sampling at point z

Ua(y), us(y) absorption and scattering probabilities at point y

w(y) extinction coefficient at point y

T(x,y) transmittance or attenuation of light between two points

L.(x,)  emission energy at point X in the direction @

Li(x,0) in-scattering energy at point X coming from direction @

L(z,0) emitted or reflected energy at point z in the direction @
coming from a background surface

X a light transport path

f(X) contribution of the differential flux carried by path X

Following similar mathematical notations used in Novdk et
al. [46] (see [Table I), we can write the general VRI as follows
(more details are in our supplementary report):

Lixo)= [ T(%,Y) [1a(¥)Le(y, ) + 15 (y)Ls(y, )] dy
+T(x,z)L(z,®) 1
————
background

Iterative approximations of the VRI can be achieved through
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Figure 2: Illustration of an exemplar light path X, transporting
L(x, ®) radiance energy to its ray origin at X in the direction ®.

Figure 3: Building incremental light paths. One way to avoid
building excessively long paths is to place the last vertex x; inside
a randomly selected light source after only a few real collisions.

progressive VPT, computing only a small number of light transport
trajectories (light paths) in a single frame (see [Fig. 2). So, the
Jj-th pixel color in the rendered image / can be represented as the
following integral:

L= [, e, @

where & is the space of all possible light paths in the scene.

Applying MC estimation to the integral in[Eq. T} we can obtain:

(Lx)) = Tlﬁ’(‘;;’ ) 109 Le(y, )+ 1, (V) Ly, ©)]
(3)
T(x,z)
+ P L(z,®).

The main advantage of this approach is that it only requires to
evaluate one path segment per light path at a time.

Incremental light transport paths. A common approach for
constructing a light transport path X = (xo,Xp,...,X;) € & is to
start from the camera at point Xo and extend the path incrementally
segment by segment (see [Fig. 3). To determine the location of the
next vertex x;1; of a light path, a ray direction w;y; is sampled
with p(@;1), which depends on the medium phase function or the

surface bidirectional scattering distribution function (BSDF) at x;.

For this work, we considered only isotropic scattering where the
phase function is # for all directions.

Distance sampling. The iterative evaluation of requires to
find a suitable discrete position y, and evaluate its illumination
contribution. Delta tracking for free-path sampling utilizes the
concept of null collisions with a fictitious matter to achieve correct
sampling on heterogeneous volumes. It finds the candidate position
y by recursively sampling tentative collisions until one classified as
real is found. Real collisions are accepted with p(y) proportional
to the extinction coefficient g, (y). While null collisions should not
affect light transport, they require expensive memory accesses to
evaluate extinction coefficients in the volume. One general strategy
to generate a tight extinction bound is to sample free-paths using
uniform random numbers & € [0,1). A candidate lower distance
threshold can be therefore defined as:

GESULE

; )

where ">

Once delta tracking classifies a tentative collision as real and it
absorbs more energy than the bound in[Eq. 4] then y is considered
as the first actual collision. One advantage of using delta tracking

is the maximum extinction coefficient in the volume.
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Figure 4: Visualization of the auxiliary buffers commonly used in
image-space denoising. It can be noticed that the buffers computed
with 2 spp are very noisy. For illustrative purposes, we show
reference features computed using 1024 spp.

for DVR is that it is aware of transfer function alterations since each
collision is tested after transfer function values have been applied to
the volume. Improved distance sampling strategies for interactive
volume rendering would represent an orthogonal research direction
to this work.

4 SPATIO-TEMPORAL DENOISING FRAMEWORK

Using VPT is an attractive choice to support physically-based
global illumination on DVR frameworks, as the VPT is a simple
and general algorithm that covers a wide variety of lighting effects.
However, VPT tends to produce noisy approximations of the VRI
due to its stochastic nature, especially given a limited number
of samples under the real-time constraints of DVR. In particular,
VPT noise degenerates into temporal flicker when a user interacts
with the parameters of a DVR scene (e.g., lighting or transfer
functions), since VPT generates a new image from scratch, leading
to lower image quality. Our primary goal is to handle such noise
in VPT results through a real-time denoising framework that takes
advantage of spatial and temporal coherence among pixel colors to
obtain numerically and visually improved high-quality interactive
DVR results.

Challenges for DVR image-based denoising. Recent image
denoising methods [62] often utilize auxiliary features, also known
as G-buffer features (e.g., depth, normal, and albedo), to preserve
high-frequency information in rendered images. The features can
be much less noisy than radiance values for surface models, but
those can be extremely noisy, as shown in [Fig. 4] when rendering
volumetric models with a small sample count (e.g., 1 or 2 spp) under
real-time constraints. Our denoising technique shares similarities
with previous image denoisers (e.g., [17]], [45]]) in the sense that
both reduce MC variance by blending pixel colors as a weighted
sum. However, the key difference is that our method exploits
a stable feature formed by accumulating pixel colors over time,
instead of relying on the G-buffers, unlike the recent denoisers
specialized for surface models.

Real-time denoising framework. Our real-time framework
(Fig."3) is built upon progressive VPT for DVR. At each frame,
MC-DVR estimates the amount of radiance arrived at each pixel
based on VPT and the randomly generated light paths. The resulting
distribution of radiance is generally a noisy estimate given the low
sample count imposed by real-time rendering constraints. Each
estimated pixel color is then filtered using a pixel reconstruction
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Figure 5: Real-time DVR denoising framework. Our real-time
denoising is integrated into the DVR framework as postprocessing
of VPT. We take noisy frame estimates as input and reduce the
noise by utilizing spatial and temporal coherence among pixel
colors through per-pixel linear models, which utilize temporally
generated per-pixel features.

filter to obtain the current frame estimate. Our DVR denoising
technique takes the current frame estimate and updates a temporal
denoising feature that exploits temporal coherence and guides our
denoiser. Finally, our denoising technique will obtain the final
image using per-pixel linear model predictions. Our framework
supports both spatial and temporal filtering using those predictions.

5 IMAGE-SPACE DVR DENOISING TECHNIQUE

In this section, we propose our real-time image-space denoiser
for DVR images rendered using VPT. We first describe an
approximation of the radiance arriving at each pixel of a DVR
image using linear models (Sec. 5.1)), then present RLS that
estimates the coefficients of linear models in an online manner
(Sec.5.2). Lastly, we propose a new spatio-temporal denoiser using
a weighted RLS, which reduces temporal flickering when rendering
DVR images using VPT with low sample counts (Sec. 5.3).

TABLE 2: Notations for linear model predictions

Symbol Description

1 ground-truth values of an image

I MC estimated values for an image with a virtual sensor
i predicted values of an image / using linear models
Ii(t) Jj-th pixel color of an image I at time ¢

p;(t) predictor vector at time 7 for pixel j used for linear regression
z;(t) feature vector at time ¢ for pixel j

Bi(t) linear model coefficients for pixel j at time ¢

v velocity vector (y, Vy) at pixel j used for reprojection
n(vj)  reprojection operation (v;) = j+v;

gi(r) single-channel prediction error for pixel j at time ¢

e;(t) real error for pixel j at time ¢ considering color channels
é;(t) estimated error for pixel j at time ¢ considering color channels

Notation. Let us define useful terms and notations used throughout
the rest of the paper (see[Table 2). Given a virtual camera sensor
containing » pixels that ideally could capture a MC-DVR ground
truth image I, for each j-th pixel, j € [1,n], the element I ; receives
the contributions of one or multiple light paths f(X). All estimated
light paths using VPT and contributing to pixel j are denoted
as f;(X), and they are filtered using a pixel reconstruction filter
to obtain a discrete real measurement ij, an estimate of the MC
integral . We use [;(t) and I(t) to refer, respectively, to the
noisy MC estimate and denoised value for the j-th pixel color at
time t. We denote our temporal feature guiding our linear model
predictions as z.

5.1

We model the ground truth color /; at j-th pixel using the following
linear regression:

Radiance estimation using linear models

Li=p;B] +& )

where p; and fB; represents the input predictor vector and its
coefficients with length d, respectively. §; represents the prediction
error of the linear regression model p ]BJT Linear models are used
to find linear dependencies between the input regressors p; and the
ground truth signal /;. Usually p; = [1,z;], where the first element
of p; is the intercept term and z; is a feature vector of the model.
For brevity’s sake, we shall treat the value /; as a scalar unless
otherwise mentioned, since our denoising is applied to each color
channel independently. Note that the linear model represents an
approximation of the integral over all light paths f(X) for
the j-th pixel:

/@ fi®)dx~1I;=p;B/. (6)
In an interactive context, the radiance value (i.e., pixel color) /;
can vary over time, and thus we linearly model its temporal change
using the predictor p;. More specifically, the values from /;(r — &)

at frame ¢ — & to [;(r) at frame 7, can be estimated as:

A I(r) p;(t) Bjo
Ij(f:* 1) _ Pj(ffl) 13{,1 o
Ij(t—8) pj(t—68)) \Bja-1

X; Bf

In the equation above, X is the design matrix that concatenates the
predictor vectors p;(t —&8),...,p;(¢) over time. Next, we describe
Recursive Least Squares (RLS), a method to estimate the model
coefficients 3. After that, we will propose our own adaptation of
RLS by estimating alternative input predictor vectors, and how to
handle heterogeneous VPT noise more robustly.

5.2 Linear model regression using RLS

The high-level approach of RLS [40] is to update the coefficients
of the statistical models based on differences between model
predictions and measured values in an online manner. Ideally,
for a given pixel j at frame ¢, we would compute the real error by
using the values of the ground truth image I}, as e;(t) = 1;(t) — I;(¢).
Because the ground truth of the MC integral is not available in
practice, we need to estimate this error using the noisy MC estimate
I;(t) as the following:

8(r) = Ij(1) = Ij(r) = I(1) = p; (1) B (¢ — 1), ®)

where p;(r) is the predictor vector concatenating the auxiliary
features z;(r). For example, interactive denoising methods using
RLS (e.g., [45]) typically exploits noise-free G-buffers as the
auxiliary features. Given the residual é;(r), the model coefficients
B; are incrementally updated at time ¢ [40]:

Bi(1) = Bj(t = 1) +q;(t)é;(r) ©)

_ P10
A+ RO, — DR] (1)

where A is the forgetting factor, typically fixed to a value
near one (e.g., A =0.998), and P;(r — 1) is a d x d matrix which

(10)

q;(t)
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Figure 6: Reprojection on volumetric participating media. Linear
model reprojection reacts to camera transformations (i.e. #, or 1),
light source modifications (z;), and edits of the volume transfer
function (z,). This adaptative behavior of linear models avoids
triggering additional MC integration reset operations.

contains the inverse covariance of the predictor vectors. The inverse
covariance matrix is updated at frame ¢ using the matrix inversion
lemma [40] and the predictor vector p;():

Pi(r) =271 (Pj(t — 1) —q;(t)p;(1)P;(t — 1)) (11)

5.3 Our proposed denoising for MC-DVR: wRLS

The problems of the RLS approaches when facing stochastic MC-
DVR are still double. First, VPT does not generate noise-free G-
buffers when rendering with low sample counts, and thus utilizing
the buffers for the predictor vector is problematic. Second, the noise
level of the input estimates /;(t) can vary significantly over time
and can result in high variability of the linear model coefficients.
These challenges caused by real-time stochastic VPT were not
addressed in the previous RLS techniques [[17]], [45]. In this section,
we propose a weighted RLS with a temporally stable feature to
tackle the challenges.
Temporal coherence of linear models for VPT. Temporal repro-
jection is a well-known technique to exploit temporal coherence
in consecutive frames, and it maintains an additional storage (e.g.,
history buffer) where pixel colors are accumulated over time.
While the conventional temporal reprojection is to reproject
pixel colors, our method reprojects linear models to exploit the
temporal coherence more robustly for real-time VPT. Reusing
linear models has several advantages over reprojection schemes
based on caching constant values per pixel (e.g., a history buffer).
Linear regression can predict gradual changes in the camera, light
sources and transfer functions, but also it reacts immediately to
abrupt changes affecting shading (see . We estimate per-pixel
velocities v; (i.e., optical flow) of a linear model using the view
matrix and per-pixel world coordinates. Implementation details for
computing the optical flow will be given in Once a velocity
v; for the j-th pixel is calculated, we can define a reprojection
operation 7 that obtains the corresponding pixel coordinates ¢ in
the precedent frame as g < 7(v;). Even for cases where v; =0,
like light or transfer functions changes, linear models can predict
gradual changes.
Temporal denoising feature. We propose a temporal feature for
our denoising, without relying on noisy G-buffers. Ideally, the
feature should have a low variance in the temporal dimension and
have a high correlation with the ground truth image. To this end,
we adopted an exponentially weighted history buffer (e.g., [17])
as the feature z; € R? of our linear model at pixel j. Specifically,
the feature, which is corresponding to the pixel color (e.g., RGB
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Figure 7: Visualization of the VPT input, our denoising feature,
our denoised result and the reference. We also display the
corresponding error maps for the input and our final denoised
result. We display frame #100 of the MANIX camera animation.

values) in the history buffer, is updated at frame ¢ given the MC
estimates 7():

2j(t) = 0 ®lzy(t = 1), ;)] + (1 = @) (1), (12)
where « is the weight that controls the balance between history
and the current estimate. Note that the pixel index ¢ in the previous
frame can be different from the current index j, and that g is
computed using the per-pixel velocity as w(v;). The reprojected
history z,(r — 1) is rectified using y/[-], the neighborhood clamping
operator [26] that relies on the current-frame input estimate, fj(t),
to reduce artifacts caused by stale history data. Even though
we denoise color channels independently, our feature z;(r) is
constructed using the three channels simultaneously to avoid
undesired color-shift effects. [Fig. 7] shows an example feature
image that has much reduced noise compared to the input image.
Given the features constructed by accumulating colors over time,
we introduce a variant of RLS (i.e., weighted RLS) that is able to
handle temporally varying noise.
Weighted recursive least squares (WRLS). As a key technical
contribution, we propose a weighted RLS (wRLS) that takes into
account the heterogeneous noise in DVR images generated with
small numbers of samples. At a high-level, the wRLS allocates
high weights to samples with low variance and low weights to
samples with high variance. In particular, a very low weight is
assigned to outlier samples, which have an extremely high variance
so that our linear models can produce temporally stable results.
The straightforward way to compute the weight is to utilize sample
variances of pixel colors, but this cannot be robustly achieved for
our real-time scenarios where only a few samples are available.
To tackle this challenge, we control the weight by exploiting our
temporally stable feature. Explicitly, the weight w;(z) assigned to
I;(t) is computed as:

_ (1) —z(1)]
min(([;0)]][|z;(0)|)) +€’

where € is a very small number to avoid divisions by zero, and h
is a filtering bandwidth that controls a tradeoff between denoising
bias and variance. For example, smaller /. values would provide
a more temporally stable but higher bias. We found that 4 = 0.75
produces a good balance between the temporal stability and bias
for our tests. The modified equation to update linear models using
this weight is:

wj(t) = e GO,

d;(1) (13)

Pt~ 1)p! (1)
S RO = D] (1)

qj (1) = (14)
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Figure 8: Ablative comparisons of our contributions for denoising.
Temporal flicker is compared in our supplementary video (this is
frame #47 of the MANIX semi-transparent sequence). Suffix NF
and F mean using ‘No Feature’ and ‘Feature’ respectively. Ghosting
and overblurring appear when ’No Feature’ is used.

The equations to update the linear model coefficients and the
inverse covariance matrix remains the same (see [Eq. 9 and [Eq. TT),
with the exception that they use the new qY (#) instead of q;(r).

shows the results of RLS and wRLS with and without
our temporal feature. Both methods have reduced errors (see the
bottom row in when our temporal feature is used for the
methods. While both techniques have much less noise than the
MC estimated input, our method (WRLS) handles spike noise well
compared to the RLS, as shown in|Fig. 9| since the wRLS handles
the heterogeneous noise adaptively by varying its weights.
Spatio-temporal denoising using wRLS. Our wRLS reduces the
variance of VTP results by exploiting temporal coherence, but
it is also desirable to use the spatial coherence between pixel
colors within a frame to further reduce this variance. To this end,
we apply a spatial filter to the denoised output of our temporal
denoising. Technically, a linear model at a pixel can predict the
colors of its neighboring pixels as well as its own pixel color
using our per-pixel predictor vector. Specifically, to determine a
final pixel color at i-th pixel, we blend colors predicted from its
neighboring pixels defined by a 5 x 5 window centered at the i-th
pixel. We have used a bilateral weight to average the multiple
predictions and observed that this spatial filter reduces residual
noise of the temporal output, without excessive blurring thanks to
our feature-based linear predictions.

6 IMPLEMENTATION DETAILS

We have built our DVR denoising framework using the Exposure
Render proposed in Kroes et al. [33]]. Specifically, we have extended
their framework to simulate multiple scattering effects and support
additional light sources (e.g., point lights or HDR light probe
captures). For example, we have utilized delta tracking for free-
path sampling and built random walk paths to simulate multiple
scattering effects. In particular, we have connected the last path
vertex with a randomly selected light source using unidirectional
sampling. We have used a separable Gaussian kernel to implement
our pixel reconstruction filter, as this provides reasonable results for
real-time purposes [50]. When computing our temporal feature, we
have set the parameter ¢ (in[Eq. 12)) to 0.75. Our DVR framework
internally works in HDR (CIE-XYZ) colorspace, while for image
display, it transforms final images into LDR (RGB) colorspace.

RLS-F MC Est.

Ours

Camera animation #33 Dynamic lighting #85 Edit materials #130

Figure 9: Results of RLS and wRLS both using our feature. While
both methods produce reasonably good images thanks to our
feature, wRLS suffers much less spike noise as it down-weights
input pixel colors with high variances (check our supplemental
video for temporal stability comparisons).

In our framework, we perform the denoising in the original HDR
space before applying any tone-mapping or gamma correction.
Optical flow estimation. An optical flow estimation is necessary
to perform our temporal reprojection. In rendering, we typically
exploit the world coordinates intersected by rays to estimate
the per-pixel image velocity, commonly used in reprojection
techniques for rendering surface models. Nevertheless, a ray can
intersect at multiple locations within participating media due
to its semitransparent nature. The naive ways of handling such
ambiguous world coordinates could select a world coordinate
randomly or use an average one. We, however, have found that it
could result in unstable temporal reprojections. To mitigate this
problem, we compute our per-pixel image velocity using the closest
world coordinate from the view position of the first real collision
according to delta tracking. Our implementation of the optical flow
estimation is a heuristic, but we have found that this simple choice
works reasonably well for our tested scenarios (e.g., and
[Fig. T4). We leave more principled manners of estimating optical
flow in volume rendering as future work.

Scene Resolution Bps | Training data

(voxels) (only for RAE)
MANIX 256 x 256 x 230 16 500 frames
CHAMELEON 1024 x 1024 x 1080 | 8 500 frames
HELODERMA | 1024 x 1024 x 555 8 500 frames
DRAGON 1024 x 1024 x 1024 | 8 -

TABLE 3: Scenes used in our experiments. We detail the volume
resolution, the bits per sample (bps) and the number of images
used to train DNN-based solutions like RAE [J5]. Unless otherwise
specified, all rendered images are always in HD resolution (1280 x
720p). The DRAGON dataset is only used at testing time.

7 RESULTS AND EVALUATION

In this section, we validate the performance of our DVR denoising
using a series of experiments where we use a collection of stationary
volume data sets: MANIX, CHAMELEON, HELODERMA and
DRAGON (see Table [3). Our supplementary material contains
a figure that shows the default transfer functions used in our
experiments. Moreover, one of our supplementary videos demon-
strates our denoising results during dynamic editing operations on
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(a) Visual comparisons of denoising methods.
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(b) Numerical accuracy over time for the HELODERMA sequence.

Figure 10: Real data sets tested for MC-DVR camera animations.

live recorded sessions running on a 2.8 GHz i7 Intel processor
laptop with 32 GB of RAM and an Nvidia 1070 GTX GPU.
All our testing scenes include dynamic changes, e.g., the camera

viewpoint transformation, changing lights, or transfer functions.

Unless stated otherwise, we used the same GPU configuration and
screen resolution (1280 x 720p) for all reported experiments.

71
Recurrent Auto-Encoders (RAE). We compared our method with

Comparison with State-of-the-Art Denoisers

a recent learning-based denoising proposed by Chaitanya et al. [3]).

This previous work uses RAEs and was optimized for interactive
reconstruction of MC image sequences with surface models, but
it was not trained for volume rendering. We implemented their
approach in Tensorflow and retrained the network on DVR
images for a fair comparison.

Training RAEs for volume data. We retrained their proposed
RAE architecture using MC image sequences generated by
our DVR. In volume rendering, auxiliary features can be very
noisy [48]l, and thus our best option was to train RAEs using
the input color buffer exclusively. For training the RAEs we
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#596 34.47 dB 38.01 dB 40.80 dB 41.73 dB (PSNR)

0.108 0.039 0.045 0.037  (LPIPS)

Ours 2 spp. MC Est. RAE SVGF Ours Ref.

Figure 11: Results for MANIX and CHAMELEON tested under
MC-DVR with animated point lights. Full time-wise comparisons,
for both PSNR and LPIPS metrics, are available for all data sets in
the supplemental material.

generated 500 temporal sequences for MANIX, CHAMELEON, and
HELODERMA scenes (as seen in[Table 3). To generate the sequences
for each scene, we modified the camera view and orientation around
the volume, the light source position, and we also modified the
transfer function of the volume. Note that we trained the network
with the same scenes (MANIX, CHAMELEON, HELODERMA) used
for our comparisons, just with some variations (e.g., camera view or
the position of a light source). Furthermore, we trained a separate
RAE network for each scene in order to maximize its denoising
quality. The networks were trained for 150 epochs, taking one week
of training time each using an Nvidia Quadro P6000 GPU. Note
that we did not change the volume data itself for their testing (i.e.,
for comparisons with our method). While it is common practice to
have different test scenes from training scenes, we chose this overly
fair comparison so that our method can be compared with an upper
bound performance of the RAE for the three scenes. Moreover, we
used the DRAGON scene to compare our method with the RAE for
general scenarios with a non-trained volume.

Surface-based denoising methods. We also compared with the
spatiotemporal variance-guided filtering (SVGF) [53]], whose
primary purpose is to get rid of global illumination noise generated
in scenes with surface models. We implemented SVGF following
the guidelines in their paper, but we exchanged its reprojection
scheme with ours (as explained in in order to improve the
denoising accuracy of SVGF for DVR.

Evaluation metrics. We report error images, computed as absolute
per-pixel differences with a reference, peak-signal-to-noise ratio
(PSNR) and learned-perceptual-image-patch-similarities (LPIPS)
by Zhang et al. [[60], which is a recent perceptual metric improving
over SSIM and MS-SSIM. Usually a higher PSNR means higher
quality, while for LPIPS a lower value means better quality.

7.2 DVR evaluation scenarios

We compared our method with the previous techniques given
different types of user interaction scenarios for DVR. For each
scenario, we computed a reference sequence with 1024 spp at
720p. Please, refer to our supplementary video and material for
visual comparisons and time-wise PSNR and LPIPS metrics.
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(a) Visual comparisons of denoising methods.
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(b) Numerical accuracy over time for the CHAMELEON sequence.

Figure 12: Real volume data sets tested for MC-DVR with animated
area lights.

& Scenario 1: modification of camera parameters.

We created predefined camera animations that modified the
position and orientation of the camera viewpoint for almost
every frame during the sequence. Since our training data include
simultaneous animations of various parameters, we decided to
present a more straightforward case to the RAE so that the network
can show a near-ideal denoising performance. We used the same
camera animation presented at training time but fixing all other
parameters, i.e., lighting and transfer function. We also run our
method and SVGF on the same input sequences. [Fig. 10](a) shows
visual comparisons of denoised frames during camera animations.

Discussion. In general, we noticed that our method exploits
temporal coherence appropriately and produces temporally
more stable results than RAE and SVGF. Our method behaves
reasonably well either for surface reflections (e.g., skull reflections)
or semi-transparent materials (e.g., MANIX eyelids or vessels). For
still images, RAE and our method have a comparable visual quality

9

(e.g., similar LPIPS in (b)). While RAE can infer texture
patterns quite convincingly (e.g., CHAMELEON skin bumps), its
reconstruction is sometimes not as faithful and tends to wash out
details. On the other hand, our method and SVGF tend to preserve
the original lighting and geometric details better, but our method is
temporally much more stable than SVGF.

¥ Scenario 2: interaction with light sources.

We compared our method with RAE and SVGF under different
lighting scenarios. It remains a highly impractical solution to
reproduce all possible lighting conditions in the RAE training
data. Thus, we decided to choose one representative lighting setup,
like a rectangular area light as the principal light source and an
environment map as a fill light. We generated training samples
where the area light source is rotated around the main volume
while we keep the environment lighting active. Analogously with
the camera animation test, at testing time, we used the same path
for the area light and the same environment lighting, but the
camera and the transfer functions remained fixed. We tested our
DVR denoising under different luminaire sources:

Point lights. [Fig. 11| shows denoising results given a single point
light animated around the main volume inside a dark environment.
In this case, our method obtained comparable reconstruction
quality as indicated by PSNR numbers but always better perceptual
distance according to the LPIPS metric.

Area lights. For this test, we illuminated our data sets using the
same HDR light probe captured environment used at training
time and animated the rectangular area light rotating around the
main volume. In (a), we show visual comparisons with
real volumes, and in [Fig. 12] (b) the time-wise quantitative values
(PSNR and LPIPS) for the CHAMELEON scene.

Discussion. In general, we observed that our technique produces
visually sharper and more faithful reconstructions than RAE
and SVGF approaches for this scenario. Regarding temporal
coherence, our method provides more stable visualizations
with less low-and-medium frequency flicker, as shown in our
supplementary video. In the scenario with area lights, SVGF
and our method generate sharper results than RAE. For example,
high-frequency details on the thin vessels on the left temple of
the head are well preserved by SVGF and ours. However, the
SVGF suffers from spike noise, and its LPIPS numbers are much
higher than with our method. This leads to the noticeable temporal
flickering of SVGEF, as shown in our supplementary video. While
RAE shows better PSNR numbers than ours for MANIX, our
method produces the best distortion and perceptual results for both
CHAMELEON and HELODERMA. In particular, our LPIPS (0.039)
is much lower than that of RAE (0.132), as RAE does not preserve
the high-frequency details for HELODERMA. Also, our method
produces temporally more stable results than the RAE for the
tested scenes.

L% Scenario 3: editing of transfer functions.

Another interaction scenario is user manipulation of the transfer
function, which is a classic interaction for visual inspection of
volume data since it allows for hiding or enhancing different
structures in the volume. The manipulation of the transfer function
during interactive visualization would require recalculating the
MC integral after every variation. To compare our method with
RAE and SVGF, we used the same manipulation of the transfer
functions as the one utilized to generate the training data for the
RAE approach. The only variation for this test is that the camera
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(a) Visual comparisons of denoising methods.
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(b) Numerical accuracy over time for the HELODERMA sequence.

Figure 13: MC-DVR with transfer function variations in real-time.

and the lighting conditions are fixed.

Discussion. (a) shows a single frame captured during the
interaction to illustrate the visual quality obtained with each method,
and [Fig. T3] (b) shows time-wise PSNR and LPIPS comparisons
for the HELODERMA volume. Our method often produces more
accurate and perceptually preferable results than RAE and SVGF
in terms of PSNR and LPIPS metrics. For example, the LPIPS
of RAE (0.045) is 27% better than ours (0.057) for MANIX, but
our technique outperforms RAE for the other cases. Overall, RAE
tends to generate overly blurred results and the perceptual metric
value of RAE (0.128) for HELODERMA is 3.9 higher than ours
(0.033). As shown in our supplemental video, RAE generates
low-and-medium frequency flickering artifacts and tends to blur
high-frequency details of volumetric models. On the other hand,
our method produces robust denoising results given different types
of transfer functions.

7.3 DVR of highly-transparent volumes

We tested the denoising methods for complex semitransparent
iso-surfaces and DVR camera animations (Fig. 14). Given these
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(b) Numerical accuracy over time for the semi-transparent MANIX .

Figure 14: Complex transfer functions demonstrating multiple
semi-transparent isosurfaces on the MANIX data set. In general,
our result achieves good reconstructions in comparison to RAE
and SVGE, but much better temporal stability.
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Figure 15: Complex geometry with dense homogeneous participat-
ing media material, shown on the DRAGON data set. Full time-wise
comparisons, for both PSNR and LPIPS metrics, are available for
this scene in the supplemental material.

experiments, our technique shows comparable distortion and better
perceptual errors than both RAE and SVGF, as shown in[Fig. 14| (a)
and the time-wise plots in [Fig. 14| (b). In[Fig. 13} we also tested
semitransparent homogeneous media with the DRAGON data set,
which was not used at training time by the RAE. When producing
results for RAE, we always picked the best result from our three
pre-trained networks.
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Figure 16: Our results with different numbers of samples. We
render semi-transparent multiple isosurfaces with narrow transfer
function bands for the MANIX dataset.
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Figure 17: Numerical convergence of RAE and our method with dif-
ferent numbers of samples for the semi-transparent MANIX dataset.

7.4 Convergence and temporal stability

Convergence. [Fig. 16| shows our results with varying the samples
per pixel (spp), and it indicates that our numerical accuracy
improves progressively as increasing the spp. We also compare
our numerical convergence with RAE in[Fig. 17] and our method
shows better convergence than the previous method. For example,
the improvements of RAE over noisy input images become more
modest, as the sample count increases. On the other hand, our
method consistently improves the input images.

Temporal stability. The temporal stability of animated sequences
is a critical aspect of maximizing user experience during interactive
visualization. As demonstrated in our supplemental videos, our
approach provides more consistent temporal stability while min-
imizing the negative impact of outlier samples (i.e., spike noise)
thanks to our wRLS. Camera animations are challenging scenarios
for our temporal reprojection, but we did not notice strong overblur
or ghosting in our experiments, especially when compared to RAE
that suffers from low-and-medium frequency flickering artifacts.
In [Fig. 18] we tested the denoising methods for a static camera
but in the presence of input temporal MC variance caused by
only the random jittering present in the camera rays. Our method
handles spike noise appropriately while preserving the details of
the volume.
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Figure 18: Temporal flicker and outlier removal on the
CHAMELEON data set. Here we use a highly transparent transfer
function and one extra scattering bounce per sample. This complex
setup creates more outlier samples and stresses the denoisers.

7.5 Runtime performance

The computational complexity of our denoising mainly depends
on image resolution (e.g., 1280 x 720p HD used for our tests). In
our experiments, the execution time allocated to MC sampling and
DVR rendering with 2 spp is ~ 40 ms. The average runtime of our
denoiser is more than x3 less, being around ~ 12 ms per frame
(£2.5 ms). The computation overhead of our denoising remains
solely dependent on the image resolution, and thus 12 ms can be
well suited for real-time DVR. Also, our method and SVGF do
not require expensive preprocessing stages, as it happens for RAEs
where network training can take several days. The running times
for RAE and SVGF are much higher than the overheads described
in the original papers. Our RAE implementation works offline
and takes over a second to process a single frame. Our SVGF
implementation working with DVR can take ~ 150 ms per frame,
which is also much higher than the overhead described in their
paper. Our unoptimized implementations may cause all this, and
thus, for reference purposes, we report the optimized times in their
papers. We took as reference timings the performance reported in
authors’ original papers. RAE and SVGF required 54.9 ms and ~
4.4 ms respectively for the same 720p HD resolution.

7.6 Limitations and future work

The proposed method makes use of temporal reprojection to
identify candidate linear models for the next predictions. However,
this reprojection can make an error, especially inside heterogeneous
volumes. In our experiments, we noticed incorrect reprojections
could result in a small degree of overblur or sporadic ghosting
when strong disocclusions occur, and in this case, the linear
models can fail to compensate for this change. This trade-off
falls within the expectations of any temporal filter since small
amounts of overblurring are often perceived as more acceptable
than the flickering effect [58]l, especially when flickering is
significantly reduced by the filtering method. Nevertheless, it would
be ideal for designing robust reprojection schemes specialized
for heterogeneous volumes, and we leave that as future research.
Our method approximates radiance changes over time with linear
functions, and the approximation error can become large when the
radiance varies in a totally non-linear manner. shows a
challenging scenario where a dynamic light changes its color over
time. Our method produces improved results compared to RAE and
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Figure 19: A challenging scenario with an animated area light
that changes its color rapidly over time. RAE shows a color shift
and excessive blur on this difficult scenario. Our method also
generates slightly over-blurred results but shows better numerical
reconstruction and more pleasant visual results than state-of-the-art.

SVGF. However, to further optimize our denoising, we would like
to investigate an automatic parameter selection for the forgetting
factor. It would also be interesting to integrate our denoising into
an advanced framework that handles volumes with non-exponential
free-flight distributions [3]].

8 CONCLUSIONS

This paper has presented a novel real-time denoising technique
that reduces noise in VPT when used for DVR. In particular, our
method produces high visual fidelity and temporally stable results
for challenging scenarios where VPT suffers severe noise due
to the real-time constraints (e.g., 1 or 2 spp). Technically, we
reduce the variance of VPT effectively using per-pixel linear model
predictions and additional spatial filtering, which take advantage of
the spatio-temporal coherence among pixel colors in consecutive
frames. Our denoising achieves temporal stability thanks to our
weighted recursive least squares that addresses heterogeneous noise
introduced by VPT. We have extensively demonstrated that our
framework enables users to manipulate volume data experiencing
much less temporal flicker interactively.

ACKNOWLEDGMENTS

The authors would like to thank reviewers for their insightful
feedback. We also thank S. Oh, F. Lumbreras and J. Serrat for
their help with Tensorflow, and T. Kroes for Exposure Render. The
datasets are courtesy of the OsiriX Foundation (MANIX), University
of Texas (CHAMELEON), University of Arizona (HELODERMA)
and XYZ RGB Inc. (DRAGON). This work has received funding
from the European Union’s Horizon 2020 research and innovation
programme under the Marie Sklodowska-Curie g.a. No 665919.
J.A. Iglesias-Guitian acknowledges the UDC-Inditex InTalent
programme, the Spanish Ministry project TIN2017-88709-R,
RYC2018-025385-1 (MCIU/AEI/FEDER, EU), FEDER Galicia
ED431G 2019/01 and the Nvidia GPU Grant Program. B. Moon
was supported by The Cross-Ministry Giga KOREA Project grant
funded by the Korea government (MSIT) (No. GK20P0300).

12

REFERENCES

(1]
(2]

[3]

(6]
(7]

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

M. Abadi et al. TensorFlow: Large-scale machine learning on heteroge-
neous systems, 2015. Software available from tensorflow.org.

S. Bako, T. Vogels, B. McWilliams, M. Meyer, J. Novdk, A. Harvill,
P. Sen, T. Derose, and F. Rousselle. Kernel-predicting convolutional
networks for denoising monte carlo renderings. ACM Trans. on Graphics
(TOG), 36(4):97, 2017.

B. Bitterli, S. Ravichandran, T. Miiller, M. Wrenninge, J. Novik,
S. Marschner, and W. Jarosz. A radiative transfer framework for non-
exponential media. ACM Trans. on Graphics (TOG), 37:225, 2018.

B. Bitterli, F. Rousselle, B. Moon, J. A. Iglesias-Guitidn, D. Adler,
K. Mitchell, W. Jarosz, and J. Novak. Nonlinearly weighted first-order
regression for denoising monte carlo renderings. In Computer Graphics
Forum, vol. 35, pp. 107-117. Wiley Online Library, 2016.

C. R. A. Chaitanya, A. S. Kaplanyan, C. Schied, M. Salvi, A. Lefohn,
D. Nowrouzezahrai, and T. Aila. Interactive reconstruction of monte carlo
image sequences using a recurrent denoising autoencoder. ACM Trans.
on Graphics (TOG), 36(4):98, 2017.

S. Chandrasekhar. Radiative Transfer. Courier Corporation, 1960.

W. Coleman. Mathematical verification of a certain monte carlo sampling
technique and applications of the technique to radiation transport problems.
Nuclear science and engineering, 32(1):76-81, 1968.

E. Dappa, K. Higashigaito, J. Fornaro, S. Leschka, S. Wildermuth, and
H. Alkadhi. Cinematic rendering—an alternative to volume rendering for
3d computed tomography imaging. Insights into Imaging, 7(6):849-856,
2016.

J. Diaz, T. Ropinski, I. Navazo, E. Gobbetti, and P.-P. Vizquez. An
experimental study on the effects of shading in 3d perception of volumetric
models. The Visual Computer, pp. 1-15, 2016.

K. Engel. Real-time monte-carlo path tracing of medical volume data. In
NVIDIA GPU Technology Conference (GTC), 2016.

T. Engelhardt, J. Novak, and C. Dachsbacher. Instant multiple scattering
for interactive rendering of heterogeneous participating media. In
Technical Report. KIT - Karlsruhe Institut of Technology, Dec. 2010.

R. Englund and T. Ropinski. Evaluating the perception of semi-transparent
structures in direct volume rendering techniques. In SIGGRAPH ASIA
2016 Symp. on Visualization. ACM, ACM, 2016.

T. Etiene, D. Jonsson, T. Ropinski, C. Scheidegger, J. Comba, L. G.
Nonato, R. M. Kirby, A. Ynnerman, and C. T. Silva. Verifying
Volume Rendering Using Discretization Error Analysis. [EEE Trans.
on Visualization and Computer Graphics (TVCG), 20(1):140-154, 2014.
M. Gharbi, T.-M. Li, M. Aittala, J. Lehtinen, and F. Durand. Sample-based
monte carlo denoising using a kernel-splatting network. ACM Trans. on
Graphics (TOG), 38(4):125, 2019.

T. Hachisuka, S. Ogaki, and H. W. Jensen. Progressive photon mapping.
In ACM Trans. on Graphics (TOG), vol. 27, p. 130. ACM, 2008.

M. Hadwiger, P. Ljung, C. R. Salama, and T. Ropinski. Advanced
illumination techniques for gpu volume raycasting. In ACM Siggraph
Asia 2008 Courses, p. 1. ACM, 2008.

J. A. Iglesias-Guitian, B. Moon, C. Koniaris, E. Smolikowski, and
K. Mitchell. Pixel history linear models for real-time temporal filtering. In
Computer Graphics Forum, vol. 35, pp. 363-372. Wiley Online Library,
2016.

W. Jarosz, C. Donner, M. Zwicker, and H. W. Jensen. Radiance caching
for participating media. ACM Trans. on Graphics (TOG), 27(1):7, 2008.
W. Jarosz, D. Nowrouzezahrai, R. Thomas, P.-P. Sloan, and M. Zwicker.
Progressive photon beams. ACM Trans. on Graphics (TOG), 30(6):181,
2011.

W. Jarosz, M. Zwicker, and H. W. Jensen. The beam radiance estimate
for volumetric photon mapping. Computer Graphics Forum (Proceedings
of Eurographics), 27(2):557-566, Apr. 2008.

H. W. Jensen. Global illumination using photon maps. In Rendering
Techniques’ 96, pp. 21-30. Springer, 1996.

D. Jonsson, J. Kronander, T. Ropinski, and A. Ynnerman. Historygrams:
Enabling interactive global illumination in direct volume rendering using
photon mapping. IEEE Trans. on Visualization and Computer Graphics,
18(12):2364-2371, 2012.

D. Jonsson, E. Sundén, A. Ynnerman, and T. Ropinski. A survey of
volumetric illumination techniques for interactive volume rendering. In
Computer Graphics Forum, vol. 33, pp. 27-51. Wiley Online Library,
2014.

D. Jonsson and A. Ynnerman. Correlated photon mapping for interactive
global illumination of time-varying volumetric data. [EEE Trans. on
Visualization and Computer Graphics, 23(1):901-910, 2017.

J. T. Kajiya and B. P. Von Herzen. Ray tracing volume densities. In ACM
SIGGRAPH Computer Graphics, vol. 18, pp. 165-174. ACM, 1984.



[26]

(27]
[28]

[29]

[30]

(31]

(32]

[33]

(34]

(35]

[36]

[37]

(38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

[48]

[49]

[50]

(511

[52]

B. Karis. High-quality temporal supersampling. Advances in Real-Time
Rendering in Games, ACM SIGGRAPH Courses, 1, 2014.

A. Kharlamov and V. Podlozhnyuk. Image denoising. NVIDIA, 2007.

R. Khlebnikov, P. Voglreiter, M. Steinberger, B. Kainz, and D. Schmalstieg.
Parallel irradiance caching for interactive monte-carlo direct volume
rendering. In Computer Graphics Forum, vol. 33, pp. 61-70. Wiley
Online Library, 2014.

D. Korner, J. Portsmouth, F. Sadlo, T. Ertl, and B. Eberhardt. Flux-limited
diffusion for multiple scattering in participating media. In Computer
Graphics Forum, vol. 33, pp. 178-189. Wiley Online Library, 2014.

J. Krivanek, K. Bouatouch, S. N. Pattanaik, and J. Zara. Making radiance
and irradiance caching practical: Adaptive caching and neighbor clamping.
Rendering Techniques, 2006:127-138, 2006.

J. Krivanek and P. Gautron. Practical global illumination with irradiance
caching. Synthesis lectures on computer graphics and animation, 4(1):1—
148, 2009.

J. Krivanek, P. Gautron, S. Pattanaik, and K. Bouatouch. Radiance caching
for efficient global illumination computation. IEEE Trans. on Visualization
and Computer Graphics, 11(5):550-561, 2005.

T. Kroes, F. H. Post, and C. P. Botha. Exposure render: An interactive
photo-realistic volume rendering framework. PloS one, 7, 2012.

J. Kronander, D. Jonsson, J. Low, P. Ljung, A. Ynnerman, and J. Unger.
Efficient visibility encoding for dynamic illumination in direct volume
rendering. IEEE Trans. on Visualization and Computer Graphics, 18:447—
462, 2012.

C. Kulla and M. Fajardo. Importance sampling techniques for path
tracing in participating media. In Computer Graphics Forum, vol. 31, pp.
1519-1528. Wiley Online Library, 2012.

P. Kutz, R. Habel, Y. K. Li, and J. Novédk. Spectral and decomposition
tracking for rendering heterogeneous volumes. ACM Trans. on Graphics
(TOG), 36(4):111, 2017.

E. P. Lafortune and Y. D. Willems. Rendering participating media with
bidirectional path tracing. In Rendering Techniques’ 96, pp. 91-100.
Springer, 1996.

F. Lindemann and T. Ropinski. About the influence of illumination models
on image comprehension in direct volume rendering. /EEE Trans. on
Visualization and Computer Graphics, 17(12):1922-1931, Dec 2011.

N. Liu, D. Zhu, Z. Wang, Y. Wei, and M. Shi. Progressive light volume
for interactive volumetric illumination. Computer Animation and Virtual
Worlds, 27(3-4):394-404, 2016.

L. Ljung and T. Soderstrom. Theory and practice of recursive identifica-
tion. MIT Press, 1987.

J. G. Magnus and S. Bruckner. Interactive dynamic volume illumination
with refraction and caustics. /IEEE Trans. on Visualization and Computer
Graphics, 24(1):984-993, 2018.

M. Mara, M. McGuire, B. Bitterli, and W. Jarosz. An efficient denoising
algorithm for global illumination. In Proceedings of High Performance
Graphics. ACM, New York, NY, USA, July 2017.

N. Max. Optical models for direct volume rendering. IEEE Trans. on
Visualization and Computer Graphics, 1(2):99-108, 1995.

N. Max and M. Chen. Local and global illumination in the volume
rendering integral. In Dagstuhl Follow-Ups, vol. 1. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2010.

B. Moon, J. A. Iglesias-Guitian, S.-E. Yoon, and K. Mitchell. Adaptive
rendering with linear predictions. ACM Trans. on Graphics (TOG),
34(4):121, 2015.

J. Novik, I. Georgiev, J. Hanika, and W. Jarosz. Monte carlo methods
for volumetric light transport simulation. In Computer Graphics Forum,
vol. 37, pp. 551-576. Wiley Online Library, 2018.

J. Novdk, A. Selle, and W. Jarosz. Residual ratio tracking for estimating
attenuation in participating media. ACM Trans. on Graphics (TOG),
33(6):179, 2014.

J. Noviék, I. Georgiev, J. Hanika, J. Kfivanek, and W. Jarosz. Monte carlo
methods for physically based volume rendering. In ACM SIGGRAPH
Courses, aug 2018.

G. Paladini, K. Petkov, J. Paulus, and K. Engel. Optimization techniques
for cloud based interactive volumetric monte carlo path tracing. In
Industrial Talk, EuroVis 2015. The Eurographics Association, 2015.

M. Pharr, W. Jakob, and G. Humphreys. Physically based rendering:
From theory to implementation. Morgan Kaufmann, 2016.

S. P. Rowe, P. T. Johnson, and E. K. Fishman. Initial experience with
cinematic rendering for chest cardiovascular imaging. The British Journal
of Radiology, 91(1082), 2018.

C. R. Salama. Gpu-based monte-carlo volume raycasting. In Computer
Graphics and Applications, 2007. PG’07. 15th Pacific Conference on, pp.
411-414. IEEE, 2007.

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

13

C. Schied, A. Kaplanyan, C. Wyman, A. Patney, C. R. A. Chaitanya,
J. Burgess, S. Liu, C. Dachsbacher, A. Lefohn, and M. Salvi. Spatiotem-
poral variance-guided filtering: real-time reconstruction for path-traced
global illumination. In High Performance Graphics, p. 2. ACM, 2017.
M. Shih, S. Rizzi, J. Insley, T. Uram, V. Vishwanath, M. Hereld, M. E.
Papka, and K. L. Ma. Parallel distributed, gpu-accelerated, advanced
lighting calculations for large-scale volume visualization. In IEEE 6th
Symp. on Large Data Analysis and Visualization, pp. 47-55, Oct 2016.
J. Stam. Multiple scattering as a diffusion process. In Rendering
Techniques’ 95, pp. 41-50. Springer, 1995.

L. Szirmay-Kalos, I. Georgiev, M. Magdics, B. Molnar, and D. Légrady.
Unbiased light transport estimators for inhomogeneous participating
media. ACM Trans. on Graphics (TOG), 36(2), 2017.

C. Weber, A. Kaplanyan, M. Stamminger, and C. Dachsbacher. Interactive
direct volume rendering with many-light methods and transmittance
caching. In VMV, pp. 195-202. The Eurographics Association, 2013.

H. Yang, J. Boyce, and A. Stein. Effective flicker removal from periodic
intra frames and accurate flicker measurement. In /5th IEEE International
Conference on Image Processing., pp. 2868-2871, Oct 2008.

Y. Yue, K. Iwasaki, B.-Y. Chen, Y. Dobashi, and T. Nishita. Unbiased,
adaptive stochastic sampling for rendering inhomogeneous participating
media. ACM Trans. on Graphics (TOG), 29(6):177, 2010.

R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang. The
unreasonable effectiveness of deep features as a perceptual metric. In Proc.
of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
586-595, 2018.

Y. Zhang, Z. Dong, and K.-L. Ma. Real-time volume rendering in dynamic
lighting environments using precomputed photon mapping. /EEE Trans.
on Visualization and Computer Graphics, 19(8):1317-1330, 2013.

M. Zwicker, W. Jarosz, J. Lehtinen, B. Moon, R. Ramamoorthi, F. Rous-
selle, P. Sen, C. Soler, and S.-E. Yoon. Recent advances in adaptive
sampling and reconstruction for monte carlo rendering. In Computer
Graphics Forum, vol. 34, pp. 667-681. Wiley Online Library, 2015.

Jose A. Iglesias-Guitian is a Ramon y Cajal
researcher funded by the InTalent Programme
at UDC (University of A Corufa) and CITIC
(Centre for ICT Research). Before, he was with
the Computer Vision Center and the Universitat
Autonoma de Barcelona (UAB) as a Marie Curie
fellow. Before coming back to Spain he was with
Disney Research. He received his Ph.D. degree
in Electronics and Computer Engineering in Italy
(2011). He is EG and ACM member.

Prajita Mane has completed a M.S. at GIST
(Gwangju Institute of Science and Technology).
She received her B.E. degree in Electronics
and Telecommunications from Pune University in
2010. Her research interests include visualization,
interactive rendering and deep learning.

Bochang Moon is an assistant professor at GIST
(Gwangju Institute of Science and Technology).
He received his M.S. and Ph.D. degrees in com-
puter science from KAIST in 2010 and 2014,
respectively. He was a postdoctoral researcher at
Disney Research. His research interests include
rendering, denoising, and augmented and virtual
reality. He served as a PC member for interna-
tional conferences such as EGSR, 13D, PG and
CGl. He is a member of IEEE and ACM.



	Introduction
	Related Work
	Monte Carlo path tracing
	Irradiance caching: precomputed radiance transfer
	Volumetric photon mapping approaches
	Many-light methods
	Diffusion approximations

	The Volume Rendering Integral
	Spatio-temporal denoising framework
	Image-space DVR denoising technique
	Radiance estimation using linear models
	Linear model regression using RLS
	Our proposed denoising for MC-DVR: wRLS

	Implementation details
	Results and evaluation
	Comparison with State-of-the-Art Denoisers
	DVR evaluation scenarios
	DVR of highly-transparent volumes
	Convergence and temporal stability
	Runtime performance
	Limitations and future work

	Conclusions
	References
	Biographies
	Jose A. Iglesias-Guitian
	Prajita Mane
	Bochang Moon


