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Supplementary Material:
Real-Time Denoising of Volumetric

Path Tracing for Direct Volume Rendering
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Contents—This is the supplementary material for the publication titled Real-Time Denoising of Volumetric Path Tracing for Direct Volume
Rendering [3]. The supplementary material includes:

• Supplementary results suite. An interactive website that allows a deep analysis of the evaluation scenarios.
• Supplementary video 1. Interactive sessions recorded live and demonstrating the capabilities of our denoising.
• Supplementary video 2. Detailed comparisons with state-of-the-art RAE [1] and SVGF [7] methods. Comparisons with RLS [5].
• The present document. We provide some DVR background useful to understand the VRI formulation used the main paper. Then

we explain some details about how we trained the RAE network. Lastly, we include the whole set of time-wise plot comparisons
for each experiment, having used both a distortion metric (i.e. PSNR) and a perceptual distance metric (LPIPS [8]).
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1 DIRECT VOLUME RENDERING IN A NUTSHELL

Volume rendering for scientific visualization is commonly used
to display a 2D projection of a 3D discretely sampled data set.
Monte Carlo Direct Volume Rendering (MC-DVR) requires the
computation of multiple light paths traveling from different light
sources through the volume and finally reaching the virtual camera.

1.1 Optical properties of rectangular volume grids.
Each discrete element of an heterogeneous volume grid is often
referred to as a voxel. A scalar value ρ , indicates the density of
matter per unit volume. Transfer functions are used in volume ren-
dering to map voxel densities with different appearance properties.
The default transfer functions used for each data set appearing in
our paper are shown in Figure 1. The absorption and scattering
coefficients, respectively µa and µs, describe the probability of
either absorbing or scattering radiance energy. The extinction
coefficient µt = µa + µs indicates the combined probability of
either event happening per unit distance. The behavior of these
events might also be affected by the incident or outgoing direction
of radiance. Moreover, voxels can contribute by adding new energy
to the light path.

1.2 The Beer-Lambert law.
The optical depth or optical thickness τ along a line between two
points in the volume x and y is defined as:

τ(x,y) =
∫ y

0
µt(x− sω)ds (1)

where ω represents the direction of that line delimited by x and
y = x− yω . A physical interpretation of this measure can be how
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long light might travel before extinction. The transmittance T (x,y)
along the same path describes the attenuation of light in the volume
between the same two points and it is defined by the following
equation known as the Beer-Lambert law:

T (x,y) = e−τ(x,y) (2)

Fig. 1: Default transfer functions used in our experiments. The
three colormaps shown for each dataset correspond with the diffuse,
specular and emissive properties of the materials. From top to
bottom we shown MANIX, MANIX with highly semitransparent
isosurfaces, CHAMELEON, HELODERMA and semitransparent
homogeneous volumetric DRAGON.

10.1109/TVCG.2020.3037680


2

M
A

N
IX

2 spp.
(a) MC Est.

2 spp.
(b) Ours

1024 spp.
(c) Ref.

2 spp.
(a) MC Est.

2 spp.
(b) Ours

1024 spp.
(c) Ref.

2 spp.
(a) MC Est.

2 spp.
(b) Ours

1024 spp.
(c) Ref.

M
A

N
IX

se
m

itr
an

sp
.

1 spp.
(a) MC Est.

1 spp.
(b) Ours

1024 spp.
(c) Ref.

2 spp.
(a) MC Est.

2 spp.
(b) Ours

1024 spp.
(c) Ref.

4 spp.
(a) MC Est.

4 spp.
(b) Ours

1024 spp.
(c) Ref.

1.3 Transmittance estimation.

In order to estimate the transmittance T (xi,xi+1), the optical depth
τ can be approximated using a Riemann summation (RS):

〈τ(t)〉RS =
k

∑
i=1

µt(ti)∆t, (3)

where ti is the i-th distance between xi−1 and xi path vertices.
Similarly to Kroes et al. [4], we utilize this approximation for our
MC volume rendering.

1.4 The radiative transfer equation (RTE) framework.

The physically accurate simulation of all possible interactions of
light with a participating medium remains a high dimensionality
problem thoroughly described in [6]. The variation of the radiance
energy traveling along a given direction ω through a differential
volume element at point x is governed by the radiative transfer
equation (RTE):

(ω ·∇)L(x,ω) =−

absorption︷ ︸︸ ︷
µa(x)L(x,ω)−

out−scattering︷ ︸︸ ︷
µs(x)L(x,ω)

+µa(x)Le(x,ω)︸ ︷︷ ︸
emission

+µs(x)Ls(x,ω)︸ ︷︷ ︸
in−scattering

(4)

The first two terms in Equation 4 correspond to energy absorption
and out-scattering, while the third and the fourth term represent
energy gains due to emission and in-scattering properties, respec-
tively. The in-scattered radiance Ls collects incident radiance Li
from all directions on the unit sphere S2:

Ls(x,ω) =
∫

S2
fp(ω,ω)Li(x,ω)dω (5)

1.5 The volume rendering integral (VRI).
The formulation of the RTE in Equation 4 corresponds with the
differential absorption, in-scattering, out-scattering and emission
events affecting the light transport in a differential volume element.
Integrating both sides of Equation 4 along direction ω yields the
integral form of the RTE:

L(x,ω) =
∫

∞

0
T (x,y)

[
µa(y)Le(y,ω)+µs(y)Ls(y,ω)

]
dy (6)

The integration bounds of Equation 6 can be truncated to
consider the endpoint z as the corresponding nearest surface model
along the ω direction, where z = x− zω . In the absence of surface
models, L(z,ω) will simply correspond with the background
emitted radiance. This truncated integral version of the RTE is
often known as the volume rendering integral (VRI):
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L(x,ω) =
∫ z

0
T (x,y)

[
µa(y)Le(y,ω)+µs(y)Ls(y,ω)

]
dy

+T (x,z)L(z,ω)︸ ︷︷ ︸
background

(7)

This equation is often taken as starting point in order to develop
further efficient approximations for interactive volume rendering
scenarios. This is the equation also used in our main paper to
develop a progressive volumetric path tracing framework that
computes only a small number of light transport trajectories before
the denoising stage.

1.6 Emission-absorption models for the VRI.

The solution of the full VRI might be computationally prohibitive
for interactive volume rendering. Hence, a common strategy to
accelerate its computation is to remove or simplify some of
the involved terms. In classic Direct Volume Rendering (DVR)
the volume data is often considered to represent a light-emitting
medium, resulting in a simplification of the RTE into an emission-
absorption model [2]. This simplified model has been widely used
for volume rendering because it provides a good compromise

between generality and efficiency of computation. The emission-
absorption model has been often implemented using ray-casting
algorithms and ray marching approaches simulating light transport
along straight rays but neglecting scattering and indirect illumi-
nation. However, in our paper the goal is to actually consider as
many indirect global illumination effects as possible, thus we can
not use this classic simplified model .

2 TRAINING DATA USED FOR THE RAE
Since we compared our method with a deep learning denoiser we
provide here more details about how the training data looks like.
Generating variations of the original data sets is achieved through
scripted variations of the camera point-of-view (POV), the light
types and their parameters and finally by modifying the transfer
functions in order to allow more and less transparent materials.

It is important to note that training a network can be considered
as a preprocessing requirement of the RAE approach. Networks
trained for long on a given training set can easily overfit, which
means that they will produce very good results for images that
are like those used as part of the training set. However, we can
interpret this overfitting as an upper bound of the performance of
such networks. For example in Figure 2 we show an overly fair
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comparison of a network trained on exactly the same data used for
testing. Despite our approach does not require any preprocessing
(i.e. training), our method remains comparable in terms of visual
quality even when tested on the same training data.

In order to deal with temporal sequences, the RAE is trained
using temporal clip patches pairs containing the generated noisy
input and its corresponding ground truth (i.e. reference patch). We
show an example for a training clip in Figure 3.

We report our numerical analysis with the help of a distortion
metric (PSNR) and a perceptual distance metric (LPIPS). We
report cases using various types of animations (i.e. camera, light
and transfer function parameters) on at least three different data
sets. We illustrate some of the downside effects of using RAE
networks for camera animations (See Figure 4). Moreover, we have
also tested how our denoising method performs when using exactly
the same data the RAE network saw at training time, something
which obviously could benefit the result for the RAE approach.
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Fig. 2: Results for MANIX, CHAMELEON and HELODERMA data
sets on same training data distributions. On the comparison we also
show the result produced by our technique and the corresponding
reference.
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Fig. 3: Training clip example consisting of 128× 128 cropped
patches at 2 spp and their corresponding reference patches at 1024
spp. Our RAE network implementation used a temporal window
of 7 frames as suggested by Chaitanya et al. [1] to learn context
information.
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Fig. 4: Example of consecutive frames rendered during camera
translation and rotation movements. The selected frames correspond
to frames for MANIX sequence starting at frame t = 62. Note how
for instance how the edge in between both eyelids is clearly shown
for all frames for reference and ours, instead it gets washed away
for some frames for the RAE. A similar effect also happens with
the two thin vessels on the cheek which appear and disappear for
some frames due to an overblurring effect.
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3 DYNAMIC CAMERA ANIMATION

3.1 MANIX dataset
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3.4 MANIX dataset: semi-transparent isosurfaces.
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4 DYNAMIC LIGHTING: POINT LIGHT

4.1 MANIX dataset
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5 DYNAMIC LIGHTING: AREA LIGHT
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6 TRANSFER FUNCTION MANIPULATION
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6.2 CHAMELEON dataset
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6.3 HELODERMA dataset
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