
Neural James-Stein Combiner for Unbiased and Biased Renderings
JEONGMIN GU, Gwangju Institute of Science and Technology, South Korea
JOSE A. IGLESIAS-GUITIAN, Universidade da Coruña - CITIC, Spain
BOCHANG MOON, Gwangju Institute of Science and Technology, South Korea

spp (log scale)
(d) Curly-hair (e) Glass-of-Water

spp (log scale) spp (log scale) spp (log scale) spp (log scale)
(a) Dragon (c) Staircase(b) Veach-ajar

re
la

tiv
e

l2
(lo

g
sc

al
e)

Fig. 1. Numerical convergence of the learning-based denoisers, KPCN [Bako et al. 2017] and AFGSA [Yu et al. 2021], with and without our technique. We
report the relative 𝑙2 errors [Rousselle et al. 2011] of the tested techniques from 16 to 2K samples per pixel (spp). The state-of-the-art denoisers show much
lower errors than their input, i.e., path tracing (PT), for small sample counts (e.g., 16), but their improvements become minor (c) or disappear ((a), (d), and (e))
for larger sample counts due to their slow convergence rates, except for the Veach-Ajar that contains fireflies. Our technique helps the denoisers have lower
errors than their unbiased inputs, and this dominance property leads to significantly improved convergence rates of the input denoisers.

Unbiased rendering algorithms such as path tracing produce accurate images

given a huge number of samples, but in practice, the techniques often leave

visually distracting artifacts (i.e., noise) in their rendered images due to a

limited time budget. A favored approach for mitigating the noise problem is

applying learning-based denoisers to unbiased but noisy rendered images

and suppressing the noise while preserving image details. However, such

denoising techniques typically introduce a systematic error, i.e., the denois-

ing bias, which does not decline as rapidly when increasing the sample

size, unlike the other type of error, i.e., variance. It can technically lead to

slow numerical convergence of the denoising techniques. We propose a new

combination framework built upon the James-Stein (JS) estimator, which

merges a pair of unbiased and biased rendering images, e.g., a path-traced

image and its denoised result. Unlike existing post-correction techniques

for image denoising, our framework helps an input denoiser have lower

errors than its unbiased input without relying on accurate estimation of

per-pixel denoising errors. We demonstrate that our framework based on

the well-established JS theories allows us to improve the error reduction

rates of state-of-the-art learning-based denoisers more robustly than recent

post-denoisers.

CCS Concepts: • Computing methodologies → Ray tracing.

Additional Key Words and Phrases: James-Stein estimator, James-Stein com-

biner, Monte Carlo rendering, learning-based denoising

ACM Reference Format:
Jeongmin Gu, Jose A. Iglesias-Guitian, and Bochang Moon. 2022. Neural

James-Stein Combiner for Unbiased and Biased Renderings. ACM Trans.

Authors’ addresses: Jeongmin Gu, Gwangju Institute of Science and Technology,

Gwangju, South Korea, jeong755@gm.gist.ac.kr; Jose A. Iglesias-Guitian, Universidade

da Coruña - CITIC, ACoruña, Spain, j.iglesias.guitian@udc.es; BochangMoon, Gwangju

Institute of Science and Technology, Gwangju, South Korea, moonbochang@gmail.com.

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.

This is the author’s version of the work. It is posted here for your personal use. Not for

redistribution. The definitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3550454.3555496.

Graph. 41, 6, Article 262 (December 2022), 14 pages. https://doi.org/10.1145/

3550454.3555496

1 INTRODUCTION
Unbiased Monte Carlo (MC) ray tracing, such as path tracing [Kajiya

1986] and bidirectional path tracing [Lafortune and Willems 1993],

has been widely employed for offline rendering applications (e.g.,

production rendering [Pharr 2018]) where complex light phenomena

need to be accurately simulated. While the unbiased methods are

guaranteed to produce a rendering output without systematic errors

(i.e., a bias), they often leave visually distracting noise due to the

variance of the MC integration. As a result, it usually takes a long

time to achieve a nearly converged image.

A well-known approach for alleviating MC rendering noise is

to exploit image denoising that trades the variances of unbiased

estimates with systematic errors (i.e., a denoising bias). A com-

monly adopted optimization for such image denoising is to exploit

hand-crafted filters (e.g., [Bitterli et al. 2016; Sen and Darabi 2012])

and locally optimize their smoothing parameters (i.e., bandwidths).

While this classical approach makes denoising errors zero with

an infinite number of samples (i.e., consistency), their denoising

performance is restricted to a chosen filter.

A recent alternative to the model-based methods is to employ a

deep neural network that maps a noisy image to the ground truth

without relying on a hard-coded filter. For example, learning-based

denoisers [Bako et al. 2017; Yu et al. 2021] demonstrated that this

flexibility could drastically improve the visual quality of unbiased

images by suppressing random artifacts. However, such model-free

techniques often struggle to maintain a fast convergence rate and

can produce denoised images with even higher errors than their

unbiased inputs (e.g., Fig. 1).

ACM Trans. Graph., Vol. 41, No. 6, Article 262. Publication date: December 2022.

HTTPS://ORCID.ORG/0000-0002-7403-1171
HTTPS://ORCID.ORG/0000-0002-0817-1010
HTTPS://ORCID.ORG/0000-0003-3142-0115
https://orcid.org/0000-0002-7403-1171
https://orcid.org/0000-0002-0817-1010
https://orcid.org/0000-0003-3142-0115
https://doi.org/10.1145/3550454.3555496
https://doi.org/10.1145/3550454.3555496
https://doi.org/10.1145/3550454.3555496

262:2 • Jeongmin Gu, Jose A. Iglesias-Guitian, and Bochang Moon

A compelling approach for remedying the slow convergence of

learning-based denoisers corrects their denoising results guided by

the mean-squared errors (MSEs) of the biased process. For example,

one can blend the denoised estimates with unbiased input [Firmino

et al. 2022] or other biased but consistent estimates [Zheng et al.

2021] per pixel. This error analysis-based approach can produce

more accurate outputs than any of their inputs when the estimated

per-pixel MSEs are correct, but a robust estimation of the per-pixel

denoising errors can be challenging in practice.While a general post-

correction method without the error analysis was recently explored

in the deep combiner [Back et al. 2020], its combination model was

not designed to improve the slow convergence of learning-based

denoisers.

We present a post-correction framework, like the existing MSE-

based correction method [Firmino et al. 2022; Zheng et al. 2021], that

improves the convergence rates of learning-based denoisers. We,

however, take a different route for improving the biased estimates.

Our framework helps an input denoiser dominate its unbiased input

(i.e., making lower errors than the unbiased estimates) irrespective

of the errors of the biased input (e.g., even for severely biased im-

ages). This dominance property makes an input denoiser improve

its convergence rate since the MSEs of the unbiased input bound

the errors of the post-corrected denoised estimates. Our main con-

tributions are as follows.

• We introduce the James-Stein (JS) estimator to the rendering

field, and our method is the first to use this estimator for im-

proving rendering efficiency to the best of our knowledge.

• We propose a localized combination framework built upon the JS

estimator, which locally fuses a pair of unbiased and biased ren-

dering estimates while forcing the combined output to dominate

the unbiased input.

We demonstrate that assisting learning-based denoisers [Bako

et al. 2017; Yu et al. 2021] to dominate their unbiased inputs can

boost their denoising performance, as illustrated in Fig. 1. We also

show that our post-correction can be more robust than existing

MSE-based post-denoisers, thanks to a fundamental difference, i.e.,

the requirement of accurate estimation of per-pixel denoising errors.

2 RELATED WORK
This section discusses the related work of image denoising (i.e.,

our main application) that produces biased pixel estimates from

their unbiased input estimates. The proposed method in this paper

does not require modifying its input rendering techniques, and thus

their unbiased input and biased output can be directly fed into our

combination framework.

Image denoising has been widely adopted for unbiased MC ren-

derings (e.g., path tracing), and it trades the variance of the noisy

input with a systematic error (i.e., bias). Classical denoisers typically

rely on predefined functional forms. Examples are wavelets [Over-

beck et al. 2009], non-local means filters [Rousselle et al. 2012, 2013],

joint bilateral filters [Li et al. 2012; Sen and Darabi 2012], and low-

order polynomials [Bitterli et al. 2016; Moon et al. 2014, 2016]. A

survey [Zwicker et al. 2015] includes an extensive overview of clas-

sical denoising techniques.

While the classical denoisers employ specific filters, the typical

behavior of these approaches is to strike the optimal balance of

denoising bias and variance by adjusting their denoising parameters

per pixel. Nevertheless, it is often technically challenging to robustly

estimate the MSEs of a denoiser (and thus optimal parameters) only

from the noisy statistics (e.g., the sample mean and variance). Kalan-

tari et al. [2015] alleviated the difficulty in parameter selection

through a multi-layer perceptron that infers the bandwidths of clas-

sical filters such as joint bilateral filters. This adaptive optimization

can allow simple denoising filters to be consistent (i.e., correct re-

sults in the limit), but their denoising performance can be restricted

due to the hard-coded nature of the designed filters.

Training a deep neural network that learns a mapping from an

unbiased input to the ground truth image has received substantial

attention [Huo and Yoon 2021] since it relaxes the requirement

of hand-crafted modeling for denoising filters. For example, Bako

et al. [2017] presented a kernel-predicting convolutional network

(KPCN) that infers the per-pixel weights of a general denoising

kernel, and Vogels et al. [2018] reformulated the KPCN for animated

sequences. Also, an advanced neural framework, the generative ad-

versarial network [Goodfellow et al. 2014], was exploited to reduce

MC rendering noise more effectively [Xu et al. 2019; Yu et al. 2021].

Moreover, it has been demonstrated that it can be beneficial to train

a neural network that takes individual samples as input since the

samples can have richer information than the sample means (i.e.,

pixel colors) [Gharbi et al. 2019; Munkberg and Hasselgren 2020].

Recent learning-based denoising has demonstrated great success,

but their flexibility (i.e., without the dependency on hand-crafted

filters) came at the expense of introducing a slow numerical conver-

gence. Our framework allows state-of-the-art denoisers to improve

their convergences and become consistent by assisting the denoised

estimates to dominate their unbiased input.

Post-correction for image denoisers. Correcting denoised images in

a post-denoising stage is appealing as denoisers typically leave resid-

ual errors (under- or over-blurred visual artifacts) in their output

images. Back et al. [2020] proposed a general combination model

which locally fuses independent and correlated pixel colors and

demonstrated that this model could boost a denoised image by blend-

ing it with a path-traced image. Nonetheless, this post-correction

was not designed to improve the convergence of the input denoisers,

and thus the post-corrected denoisers can still have a slow conver-

gence. Recent MSE-based post-denoisers [Firmino et al. 2022; Zheng

et al. 2021] addressed the convergence problem of learning-based

denoisers. Zheng et al. [2021] blended multiple denoising estimates

per pixel to obtain an improved estimate, even mixing a classical but

consistent denoiser with a learning-based one. Firmino et al. [2022]

estimated the MSEs of a learning-based denoiser using Stein’s un-

biased risk estimator (SURE) [Stein 1981] and blended the biased

estimates with their unbiased inputs per pixel. These techniques

can be theoretically ideal since combined estimates can have lower

errors than any of their inputs when the error analysis is correct.

Nonetheless, it can be technically challenging to estimate per-pixel

denoising errors accurately, and thus their per-pixel combinations

can be sensitive to the estimation errors.

ACM Trans. Graph., Vol. 41, No. 6, Article 262. Publication date: December 2022.

Neural James-Stein Combiner for Unbiased and Biased Renderings • 262:3

(b) Biased input (c) PD (d) Ours (e) Reference

relative l2 (16K spp)

relative l2 (64K spp)
(a) Unbiased input

0.09300 (64 spp) 0.00214 (KPCN) 0.00357 0.00127

1.37751 (64 spp) 0.00877 (AFGSA) 0.01033 0.00536

Fig. 2. Example results of an MSE-based post denoiser (PD [Firmino et al.
2022]) and ours, which combine the unbiased (a) and biased inputs (b).
We use path tracing and learning-based denoisers (KPCN and AFGSA) to
generate unbiased and biased images. PD does not improve the biased inputs
while leaving some random artifacts propagated from the unbiased ones.
On the other hand, our method robustly reduces the systematic errors in
the denoised estimates. The zoomed areas come from the scenes, Staircase
(top) and Veach-Ajar (bottom).

Our technique also aims to improve learning-based denoisers,

but the key difference is that we enhance the convergence rates

of the denoisers by bounding their errors through the James-Stein

estimator that allows us to robustly combine a pair of unbiased and

biased estimates without the knowledge of the per-pixel errors of

the biased input.

The James-Stein estimator in other domains. The James-Stein esti-

mator [Stein and James 1961] has been employed in various research

fields. For example, Manton et al. [1998] presented a robust Kalman

filter using the estimator for signal processing, and Hausser and

Strimmer [2009] also proposed a James-Stein type estimator for

inferring entropy and mutual information in the machine learn-

ing field. Wu et al. [2013] refined a classical non-local means filter

using the JS estimator for general image denoising. As a recent

example, the JS estimator was exploited for a learning-based classi-

fier [Chakraborty et al. 2020]. In this paper, we introduce the usage

of the JS estimator in the rendering domain for the first time.

3 BACKGROUND: THE JAMES-STEIN ESTIMATOR
This section introduces the underlying statistical foundations behind

the James-Stein (JS) estimator [Stein and James 1961] and motivates

our framework to combine unbiased and biased rendering estimates.

Suppose that we have a vector of unbiased estimates 𝑋 of size 𝑝

(𝑝 ≥ 3) that follows a 𝑝-variate normal distribution, 𝑋 ∼ 𝑁 (Θ, 𝜎2𝐼),
where Θ is the ground truth to be estimated. The unbiased estimates

are assumed to be independent and distributed with variance 𝜎2,

and thus the covariance of size 𝑝 × 𝑝 becomes the diagonal matrix

𝜎2𝐼 with the identity matrix 𝐼 of size 𝑝 .

Given the statistical assumption, it is well-known that the sample

mean is the maximum likelihood (ML) estimator for the unknown

Θ. For example, in path tracing, the unbiased pixel estimates are

generated by averaging radiance samples per pixel. The JS estima-

tor takes the unbiased estimates as input and produces improved

estimates:

𝛿 (𝑋,𝑌) = 𝑌 +
(
1 − (𝑝 − 2)𝜎2

∥𝑋 − 𝑌 ∥2

)
(𝑋 − 𝑌), (1)

where 𝑌 is a fixed but arbitrary vector (e.g., biased estimates). Intu-

itively, this estimator shrinks 𝑋 toward 𝑌 and the amount of shrink-

age is controlled by a shrinkage factor 𝜂 = 1 − (𝑝 − 2)𝜎2/∥𝑋 − 𝑌 ∥2.
The JS estimator produces biased estimates of the unknown Θ,

but it was proved that this biased estimator dominates the unbiased

ML estimator for any Θ when 𝑝 ≥ 3 [Stein and James 1961]. This

property is known as Stein’s paradox in statistics, as the dominance

property was achieved using unrelated (independent) input [Efron

and Morris 1977].

A technical caveat of the original estimator is that the shrinkage

factor 𝜂 can be negative and in this case its output estimates move

away from the 𝑌 . It can be easily prevented by forcing the 𝜂 to

always have a positive value:

𝛿+ (𝑋,𝑌) = 𝑌 +
(
1 − (𝑝 − 2)𝜎2

∥𝑋 − 𝑌 ∥2

)+
(𝑋 − 𝑌), (2)

where (·)+ =𝑚𝑎𝑥 (0, ·). This improved estimator is called the posi-

tive part JS estimator [Baranchik 1964, 1970] and it dominates the

original JS estimator 𝛿 (𝑋,𝑌).

Our motivation. While the original paper uses the zero vector

of size 𝑝 in place of 𝑌 , it is unnecessary to use the simplest one.

For example, one can assign biased estimates to 𝑌 . In this case, the

estimator can be interpreted as a combined estimator that fuses

a pair of unbiased and biased estimates [Green and Strawderman

1991].While the existing literature in statistics focuses on theoretical

perspectives of such combinations by the JS estimator, in practice,

the biased estimates should be determined in an application-specific

manner. These theoretical studies guide us to combine unbiased

(but noisy) 𝑋 and biased (but smooth) rendering estimates 𝑌 .

An intuitive alternative for such a combination is to estimate

the errors of both inputs (𝑋 and 𝑌) and blends those using the esti-

mated errors per pixel. It can be theoretically ideal when the errors

are accurate since combined estimates can dominate both inputs.

However, such an oracle estimator does not exist in practice, and

thus this MSE-based combination can be sensitive to the accuracy

of the MSE estimation. On the other hand, the JS estimator enables

combined estimates to dominate an unbiased input 𝑋 for any Θ,
irrespective of the errors of a biased input 𝑌 (e.g., even for the zero

vector in the original JS paper), and it allows our framework to

perform a more robust combination than the MSE-based approach,

as shown in Fig. 2.

4 OUR NEURAL JAMES-STEIN COMBINER
This section proposes a novel combination framework (Fig. 3) that

integrates unbiased and biased rendering estimates, where we aim

at producing robust combined estimates whose errors become equal

to or smaller than the unbiased estimates. Specifically, in Sec. 4.1 we

introduce a localized formulation of the JS estimator that combines

unbiased and biased image blocks, followed by a theoretical analysis

of its MSE error in Sec. 4.2. Then, we present an optimization of the

localized combiner to generate enhanced estimates in Sec. 4.3. The

implementation details for our framework are presented in Sec. 4.4.

ACM Trans. Graph., Vol. 41, No. 6, Article 262. Publication date: December 2022.

262:4 • Jeongmin Gu, Jose A. Iglesias-Guitian, and Bochang Moon

output
unbiased input

sample variance

biased inputs
(dual buffers)

de
co

de
r

bl
oc

k
(6

4)

de
co

de
r b

lo
ck

 (3
2)

alpha
blending
(Eq. 12)

variance
estimation

(Eq. 6)

localized
JS combiner

(Eq. 13)

skip connection

encoder block
 (n filters)

decoder block
 (n filters)

en
co

de
r b

lo
ck

 (3
2)

en
co

de
r

bl
oc

k
(6

4)
bottleneck

conv2D (3x3, n) + ReLU

conv2D (3x3, n) + ReLU

maxpooling 2D (2x2)

conv2D (3x3, n) + ReLU

conv2D (3x3, n) + ReLU

upsampling 2D (2x2)

bottleneck
conv2D (3x3, 128) + ReLU

conv2D (3x3, 128) + ReLU

R
eL

U
si

gm
oi

d

co
nv

2D
 (3

x3
, |

 |

 +
 1

)

Fig. 3. An overview of our combination framework. We feed an unbiased image 𝑋 , the variance of the 𝑋 , and dual-buffered biased images 𝑌𝐴 and 𝑌𝐵 to the
U-Net with the skip connections. The network infers the parameters per pixel 𝑖 , i.e., 𝛼𝑖 for constructing a single biased image 𝑌 ∗ from the 𝑌𝐴 and 𝑌𝐵 and
𝑤𝜎
𝑖
for estimating the unknown variance of the 𝑋 . Then, the James-Stein combiner generates the final output by fusing the 𝑋 and 𝑌 ∗ locally guided by the

estimated variance.

Table 1. Notations used throughout this paper.

Notation Description

𝑋 , 𝑌 , Θ unbiased, biased, and ground truth images

𝑋𝑐 , 𝑌𝑐 , Θ𝑐 image blocks centered at pixel 𝑐 in 𝑋 , 𝑌 , and Θ
𝑥𝑐 , 𝑦𝑐 , 𝜃𝑐 colors of pixel 𝑐 in 𝑋 , 𝑌 , and Θ
𝜎2𝑐 𝐼 , 𝜉

2

𝑐 𝐼 variances of 𝑋𝑐 and 𝑌𝑐 (𝐼 : 𝑝 × 𝑝 identity matrix)

Λ𝑐 bias of 𝑌𝑐
𝛿 (𝑋𝑐 , 𝑌𝑐) James-Stein combiner for 𝑋𝑐 and 𝑌𝑐

4.1 Localized James-Stein Combiner
Suppose that we have a pair of unbiased and biased rendering esti-

mates (𝑋 and 𝑌) as input (e.g., a path-traced image and its denoised

output). Given the input image pair (𝑋,𝑌), our objective is to ro-

bustly estimate the ground truth image Θ by fusing the images via

the JS estimator. A naïve approach for achieving this goal is to com-

pute the original estimator (Eq. 2) using the two input images, but

this could severely violate the homogeneous variance assumption

(i.e., 𝑋 ∼ 𝑁 (𝜃, 𝜎2𝐼) in Sec. 3) since the rendering estimates typically

have heterogeneous variances.

To take advantage of the JS estimator for rendering images while

alleviating the violation of the naïve technique, we conduct a local-

ized combination using two image blocks per pixel, one for unbiased

estimates, the other for the biased ones. Let us denote vectorized

image blocks at pixel 𝑐 by 𝑋𝑐 and 𝑌𝑐 , each of which includes the

pixel colors of 𝑋 and 𝑌 within a window Ω𝑐 centered at pixel 𝑐 ,

respectively. We set the Ω𝑐 to a small window (e.g., 15 × 15 pixels).

Let us define statistical models for the two image blocks as

𝑋𝑐 ∼ 𝑁 (Θ𝑐 , 𝜎
2

𝑐 𝐼), (3)

𝑌𝑐 ∼ 𝑁 (Θ𝑐 + Λ𝑐 , 𝜉
2

𝑐 𝐼), (4)

where Θ𝑐 and Λ𝑐 are the vectorized ground truth and bias values.

𝜎2𝑐 𝐼 and 𝜉
2

𝑐 𝐼 are the variances for 𝑋𝑐 and 𝑌𝑐 , respectively. Also, we

use lowercase symbols (e.g., 𝑥𝑐 , 𝑦𝑐 , and 𝜃𝑐) for the 𝑐-th pixel values

in 𝑋 , 𝑌 , and Θ respectively to distinguish those from vectorized

image blocks (e.g., 𝑋𝑐 , 𝑌𝑐 and Θ𝑐). We shall treat the pixel values as

1D scalars for brevity since we process each color channel indepen-

dently. Hence, the size of the image blocks (𝑋𝑐 and 𝑌𝑐) is 𝑝 = |Ω𝑐 |.
Table 1 summarizes the notation used throughout this paper.

Given the localized statistical assumptions, we combine the pair

of image blocks (𝑋𝑐 , 𝑌𝑐) via the JS estimator (Eq. 1):

𝛿 (𝑋𝑐 , 𝑌𝑐) = 𝑌𝑐 +
(
1 − (𝑝 − 2)𝜎2𝑐

∥𝑋𝑐 − 𝑌𝑐 ∥2

)
(𝑋𝑐 − 𝑌𝑐), (5)

which produces the estimates Θ̂𝑐 for the unknown image block Θ𝑐

(not the entire image Θ). For the unknown variance 𝜎2𝑐 , we locally

average the sample variances of 𝑋𝑐 for the estimate 𝜎̂2𝑐 :

𝜎̂2𝑐 =
1∑

𝑖∈Ω𝑐
𝑤𝜎
𝑖

∑︁
𝑖∈Ω𝑐

𝑤𝜎
𝑖 𝑠

2

𝑖 , (6)

where𝑤𝜎
𝑖
is a positive weight allocated to the 𝑖-th sample variance

𝑠2
𝑖
. We omit the center pixel index 𝑐 in𝑤𝜎

𝑐,𝑖
for brevity. We train the

neural network (Fig. 3) by supervised learning so that it can infer

the per-pixel weights properly (details will be given in Sec. 4.4).

The normalized positive weight (𝑤𝜎
𝑖
/∑𝑖∈Ω𝑐

𝑤𝜎
𝑖
in Eq. 6) makes

the estimated variance to be in-between themaximum andminimum

values of the input variances 𝑠2
𝑖
that are inversely proportional to

the sample size. It makes that the estimated variance also decreases

as the sample size increases. Hence the estimates of the localized

JS combiner (Eq. 5) go to the unbiased block 𝑋𝑐 that converges to

the ground truth Θ𝑐 in the limit. It allows the combined estimates

to become consistent, regardless of both an estimation error in the

variance and the homogeneous variance assumption.

As the estimator in Eq. 5 gives us the combined estimates Θ̂𝑐

per pixel 𝑐 , a pixel 𝑖 has multiple estimates, each of which is pre-

dicted from the blockwise estimation at its neighbor pixel 𝑐 , i.e.,

{𝛿 (𝑋𝑐 , 𝑌𝑐) |𝑐 ∈ Ω𝑖 }. We average the multiple estimates to produce

our pixel estimate
ˆ𝜃𝑖 for the 𝑖-th pixel color:

ˆ𝜃𝑖 =
1

|Ω𝑖 |
∑︁
𝑐∈Ω𝑖

𝛿𝑖 (𝑋𝑐 , 𝑌𝑐)

=
1

|Ω𝑖 |
∑︁
𝑐∈Ω𝑖

(
𝑦𝑖 +

(
1 − (𝑝 − 2)𝜎2𝑐

∥𝑋𝑐 − 𝑌𝑐 ∥2

)
(𝑥𝑖 − 𝑦𝑖)

)
, (7)

ACM Trans. Graph., Vol. 41, No. 6, Article 262. Publication date: December 2022.

Neural James-Stein Combiner for Unbiased and Biased Renderings • 262:5

0.00952 (256 spp) 0.01434 (AFGSA) 0.00532

0.01418 (1K spp) 0.01443 (KPCN) 0.00461

(a) Unbiased input (b) Biased input (c) Combined result (d) Reference (64K spp)

relative l2

relative l2

Fig. 4. Results of the James-Stein combination for unbiased and biased
images. The learning-based denoisers (KPCN and AFGSA) do not improve
the path-traced results due to their denoising bias (e.g., over-blurred edges).
Our localized combiner restores the lost details while making the combined
estimates dominate the unbiased estimates. The insets are from the scenes
Glass-of-water (top) and Curly-hair (bottom).

0.00617 (1K spp) 0.07395 0.00257

relative l₂0.01418 (1K spp) 0.97399 0.00653

Reference(a) Unbiased Input (b) Biased Input (c) Combined result
relative l₂

Fig. 5. James-Stein combined results using a severely biased input. We apply
a box filter of size 15 × 15 to the unbiased input (a) per pixel and generate
overly-blurred input images (b) for two scenes: Glass-of-water (top) and
Staircase (bottom). The combined results (c) show lower errors than the
unbiased input for this extreme case, thanks to the dominance property of
the JS combiner.

where 𝛿𝑖 (𝑋𝑐 , 𝑌𝑐) produces the estimate only for pixel 𝑖 (i.e., an ele-

ment in the per-block estimates Θ̂𝑐 obtained by 𝛿 (𝑋𝑐 , 𝑌𝑐)).
Fig. 4 shows the example results of the localized combiner applied

to the results of image denoisers. As can be noticed in the figure,

our technique reduces the excessive denoising bias introduced by

state-of-the-art learning-based denoisers while producing improved

numerical accuracy and visual fidelity.

4.2 Theoretical Discussion on the James-Stein Combiner
To evaluate the blockwise James-Stein combiner (Eq. 5), let us con-

sider the mean squared error (MSE) of the combiner, 𝐸 | |𝛿 (𝑋𝑐 , 𝑌𝑐) −
Θ𝑐 | |2. By assuming 𝑋𝑐 and 𝑌𝑐 are independent to each other, the er-

ror and its upper bound can be derived into compact forms [Green

spp (log scale)
(b) Staircase

re
la

tiv
e

l2
(lo

g
sc

al
e)

(a) Glass-of-Water
spp (log scale)

Fig. 6. Numerical convergences of the JS combiner when it takes severely
biased images as biased input. The biased inputs were generated using
a box filter with a large filtering window (15 × 15). Note that the biased
inputs show almost constant errors over the tested ranges (16 to 2K spp)
due to the fixed filtering bandwidth. However, the JS combiner using the
severely biased inputs makes the combined results have lower errors than
its unbiased input (PT).

and Strawderman 1991] (our derivations are included in Appen-

dix A):

𝐸∥𝛿 (𝑋𝑐 , 𝑌𝑐) − Θ𝑐 ∥2 = 𝑝𝜎2𝑐 − (𝑝 − 2)2𝜎4𝑐
∥𝑋𝑐 − 𝑌𝑐 ∥2

(8)

≤ 𝑝𝜎2𝑐 − 𝜎4𝑐 (𝑝 − 2)2

Λ𝑇𝑐 Λ𝑐 + 𝑝𝜉2𝑐 + 𝑝𝜎2𝑐
. (9)

As the second term in Eq. 8 is positive, i.e.,
(𝑝−2)2𝜎4

𝑐

∥𝑋𝑐−𝑌𝑐 ∥2 ≥ 0 for 𝑝 ≥ 3,

the MSE of 𝛿 (𝑋𝑐 , 𝑌𝑐) is equal to or less than the error of the unbiased
input 𝑋𝑐 (i.e., 𝐸 | |𝑋𝑐 − Θ𝑐 | |2 = 𝑝𝜎2𝑐). This dominance property can

be advantageous, particularly for learning-based denoisers that typ-

ically have lower convergence rates than their input (i.e., unbiased

MC rendering) since one could employ learning-based denoisers

for various rendering scenarios without concerning the worst case,

i.e., 𝐸 | |𝑌𝑐 − Θ𝑐 | |2 > 𝐸 | |𝑋𝑐 − Θ𝑐 | |2. Note that the JS estimator (Eq. 5)

does not take the errors (Λ𝑐 and 𝜉2𝑐) of the biased 𝑌 as input, and

the dominance property holds for an arbitrarily chosen biased input

even when its errors are much higher than the unbiased 𝑋𝑐 .

To illustrate such behavior, in Figs. 5 and 6, we show example

results where the biased inputs of the JS combiner are generated by

applying a 15× 15 box filter to the unbiased inputs. We have chosen

the large window size to produce severely biased images by remov-

ing all high-frequency details in the unbiased images. The figures

show that the JS combiner can still generate combined outputs with

lower errors than its unbiased inputs, even for the severely biased

estimates. It indicates that the JS combiner allows us to conduct a

robust combination of the input pair.

It is also worth mentioning that the JS theory does not guarantee

the dominance of the combined estimates over the biased input 𝑌𝑐 ,

unlike the unbiased 𝑋𝑐 . Nevertheless, the combined results can be

improved when taking more accurate biased estimates as input, as

the error is affected by the MSE of the biased input estimates, i.e.,

𝐸 | |𝑌𝑐 − Θ𝑐 | |2 = Λ𝑇𝑐 Λ𝑐 + 𝑝𝜉2𝑐 in Eq. 9. As a result, we empirically

found that the errors of the combined estimates tend to be smaller

than those of the biased input, even when the biased input is much

more accurate than the unbiased one.

ACM Trans. Graph., Vol. 41, No. 6, Article 262. Publication date: December 2022.

262:6 • Jeongmin Gu, Jose A. Iglesias-Guitian, and Bochang Moon

(b) Original Y (c) modified Y,
 Y*

(d) Ours (X, Y) (e) Ours (X, Y*)(a) Unbiased X
(32 spp)

0.42023 0.04157
(KPCN)

0.03495 0.02771

0.07594 0.01783
(AFGSA)

0.00970 0.01507

0.02904

0.00877

(f) Reference
(64K spp)

Fig. 7. We visualize the results of our JS combiner that uses either the
original biased input 𝑌 (b) or the modified one 𝑌 ∗ (c). The combiner with
the original 𝑌 helps the denoisers (KPCN and AFGSA) to reduce their
excessive bias in the local areas from the scenes, Glass-of-water (top) and
Curly-hair (bottom). This combination can be more effective when the
combiner exploits the optimized 𝑌 ∗ with lower errors than the original 𝑌 .

spp (log scale)
(b) Curly-hair

spp (log scale)
(a) glass-of-water

re
la

tiv
e

l2
(lo

g
sc

al
e)

Fig. 8. Numerical accuracy of our localized JS combiner that uses either an
original biased image 𝑌 (KPCN and AFGSA) or modified one 𝑌 ∗ (KPCN∗

and AFGSA∗). The JS combiner with the original 𝑌 significantly improves
the convergence of the input denoisers (KPCN and AFGSA) while enabling
the denoiser to have lower errors than the unbiased PT. Our practical op-
timization (KPCN∗ and AFGSA∗) further decreases the errors of our post-
correction, mainly when a linear regression, which uses both the original
biased input and G-buffers as features, can produce an enhanced biased
input (e.g., the Curly-Hair scene).

4.3 Optimization for the Localized James-Stein Combiner
We present a practical optimization for the localized JS combiner

(Eq. 5) so that its error can be further reduced even when its biased

input 𝑌 has much lower errors than the unbiased input 𝑋 , which

often occurs when small sample counts are used. Unfortunately, we

cannot directly modify the input generation process since we treat

such a process as a black box.

As a practical alternative, we construct a variant 𝑌 ∗
of the biased

input 𝑌 using the regression-based approach [Bitterli et al. 2016;

Moon et al. 2014].We approximate the unbiased input𝑋 with a linear

function on a feature space f , which includes the biased input 𝑌 and

rendering-specific features (albedo, normal, depth and visibility),

so that the 𝑌 ∗
can contain high-frequency information in both the

original 𝑌 and the auxiliary buffers.

Specifically, we generate the two unbiased images, 𝑋𝐴
and 𝑋𝐵

,

independent of each other. For example, the𝑋𝐴
contains the sample

means of the first half samples, and the latter 𝑋𝐵
has the means

of the other samples. We also generate two auxiliary G-buffers in

the same way. We then denoise each half-buffer using the given

denoiser and obtain two denoised images, 𝑌𝐴
and 𝑌𝐵

. Let us denote

the two feature sets f𝐴 and f𝐵 , each of which contains a half-buffered
denoised image and G-buffers.

Once the crossed half-buffer pairs, (𝑋𝐴
and f𝐵) and (𝑋𝐵

and f𝐴),
are prepared, we compute a linear model using each pair by solving

a weighted least squares minimization:

ˆ𝛽𝐴𝑐 = argmin

𝛽𝑐

∑︁
𝑖∈Ω𝑐

𝑥𝐴𝑖 − 𝛽𝑐

[
1

f𝐵
𝑖
− f𝐵𝑐

]𝑇

2 𝑒𝑥𝑝
(
−

𝑦𝐵
𝑖
− 𝑦𝐵𝑐

2
2𝜅 + 𝜖

)
,

(10)

which infers the coefficients of a linear function,
ˆ𝛽𝐴𝑐 . Note that the

optimization (Eq. 10) uses only a pair (i.e., 𝑋𝐴
and f𝐵), and thus this

should be performed again using the other pair (𝑋𝐵
and f𝐴). We set

the window size |Ω𝑐 | to 51 × 51. For brevity, we shall discuss the

first optimization (i.e., with 𝑋𝐴
and f𝐵), since the second one can

be done analogously. We solve the least-squares optimization using

the well-known closed-form solution, i.e., the normal equation.

In Eq. 10, f𝐵
𝑖
and f𝐵𝑐 are per-pixel feature vectors at pixel 𝑖 and

𝑐 . 𝜅 is a bandwidth term that controls the weight 𝑒𝑥𝑝 (·) assigned
to the pixel 𝑖 and 𝜖 = 0.01. One can estimate the per-pixel bias and

variance of the linear function and optimize the bandwidth at each

pixel, like classical regression-based denoisers [Bitterli et al. 2016;

Moon et al. 2014]. Unfortunately, this additional optimization can

be very costly since it often requires conducting such a regression

multiple times while varying the bandwidth to select the best one

per pixel. Thus, we take a much simpler option, a globally fixed

bandwidth 𝜅 , instead of a locally varying one. Specifically, we assign

the average variability of the biased input 𝑌 to the 𝜅 and use it for

all pixels, i.e., 𝜅 =

𝑌𝐴 − 𝑌𝐵

2 /2𝑁 where 𝑁 is the number of pixels.

Note that the dominance property of the JS estimator is tolerant

to this heuristically chosen bandwidth since the property holds

irrespective of the errors of the biased input (see Eq. 9).

As the linear model approximates a local region Ω𝑐 (not just the

pixel 𝑐), a pixel 𝑖 can be linearly predicted by multiple linear models

in its neighboring pixels 𝑐 ∈ Ω𝑖 . We combine the multiple values

using the weight (i.e., exp(·) in Eq. 10) for the output pixel 𝑖:

𝑦𝐴𝑖 =
1

𝑊𝑖

∑︁
𝑐∈Ω𝑖

(
ˆ𝛽𝐴𝑐

[
1

f𝐵
𝑖
− f𝐵𝑐

]𝑇)
𝑒𝑥𝑝

(
−

𝑦𝐵
𝑖
− 𝑦𝐵𝑐

2
2𝜅 + 𝜖

)
, (11)

where𝑊𝑖 is the normalization term, i.e.,𝑊𝑖 =
∑
𝑐∈Ω𝑖

𝑒𝑥𝑝 (·). We

also employ the same regression but with a different pair (𝑋𝐵
and

f𝐴), so that we can achieve the 𝑦𝐵
𝑖
per pixel 𝑖 . Our final task is to

combine the two regression outputs at pixel i, and this can be simply

achieved by a per-pixel alpha blending:

𝑦∗𝑖 = 𝛼𝑖𝑦
𝐴
𝑖 + (1 − 𝛼𝑖)𝑦𝐵𝑖 , (12)

where the blending factor 𝛼𝑖 (0 ≤ 𝛼𝑖 ≤ 1) is inferred by our neural

network per pixel 𝑖 .

This process provides us a modified bias input 𝑌 ∗
through the

two regression outputs (𝑌𝐴
and 𝑌𝐵

), and we perform our localized

combination using the unbiased 𝑋 and 𝑌 ∗
instead of the original 𝑌 .

Additionally, we exploit the positive part JS (Eq. 2) that dominates

ACM Trans. Graph., Vol. 41, No. 6, Article 262. Publication date: December 2022.

Neural James-Stein Combiner for Unbiased and Biased Renderings • 262:7

the original JS estimator, and thus the equation (Eq. 7) for our pixel

estimates is updated into the final form:

ˆ𝜃𝑖 =
1

|Ω𝑖 |
∑︁
𝑐∈Ω𝑖

(
𝑦∗𝑖 +

(
1 − (𝑝 − 2)𝜎2𝑐

∥𝑋𝑐 − 𝑌 ∗
𝑐 ∥2

)+
(𝑥𝑖 − 𝑦∗𝑖)

)
, (13)

where (·)+ =𝑚𝑎𝑥 (0, ·).
Figures 7 and 8 show the qualitative results and the numerical

convergences of our localized combiner that uses either the original

𝑌 and modified 𝑌 ∗
. As observed, our proposed optimization can

further reduce the errors of the combined estimates, mainly for small

to moderate sample counts. As the sample size increases, the errors

of the combined estimates largely depend on the JS combiner alone.

Note that the dominance property of our framework is achieved by

the JS combiner, irrespective of the practical optimization.

Our framework employs a deep neural network (Fig. 3) that esti-

mates the unknown variance (in Eq. 6) and the alpha-blending factor

(in Eq. 12). One may consider a simple alternative to the use of a

neural network. For example, one could use a Gaussian filter instead

of the variance estimation process and assign a fixed alpha (e.g.,

𝛼𝑖 = 0.5) for the blending. We observed that this classical alternative

could produce lower errors than unbiased inputs. However, its com-

bined results were sensitive to its parameter (e.g., the bandwidth of

the Gaussian filter) and not robust as our current learning-based

approach, primarily when fireflies exist in the unbiased inputs, as

analyzed in our supplementary report.

4.4 Implementation of the Neural James-Stein Combiner

To generate our final output, i.e., the combined pixel estimates
ˆ𝜃𝑖

(Eq. 13), we should provide the estimated variance 𝜎̂2𝑐 and the in-

ferred biased image 𝑌 ∗
. To this end, we should determine the param-

eters (𝑤𝜎
𝑖
in Eq. 6 and 𝛼𝑖 in Eq. 12) for these estimation processes.

Inspired by existing learning-based denoisers [Bako et al. 2017;

Kalantari et al. 2015], we exploit a deep neural network, i.e., a simple

U-Net [Ronneberger et al. 2015] with the skip connections (see

Fig. 3), which determines the parameters per pixel. Specifically, we

feed an unbiased input 𝑋 , the variance of the 𝑋 , and dual-buffered

regression outputs (𝑌𝐴
and𝑌𝐵) to the U-Net. The last convolutional

layer of the network uses |Ω𝑐 | + 1 filters of size 3 × 3 so that it

can produce the𝑤𝜎
𝑖
and 𝛼𝑖 per pixel. We use ReLU and a sigmoid

activation to enforce the constraints to the𝑤𝜎
𝑖
and 𝛼𝑖 , i.e.,𝑤

𝜎
𝑖
> 0

and 0 ≤ 𝛼𝑖 ≤ 1.

We then estimate the variances of the unbiased input 𝑋 using𝑤𝜎
𝑖

(Eq. 6) and the modified image𝑌 ∗
using the dual-buffered regression

outputs 𝑌𝐴
and 𝑌𝐵

using 𝛼𝑖 . Finally, the pixel estimates
ˆ𝜃𝑖 are

inferred via the localized JS combiner (Eq. 13) that fuses its two

inputs 𝑋 and 𝑌 ∗
guided by the estimated variance.

To let our network adjust the parameters for our localized com-

biner appropriately, we train the network by supervised learning.

Specifically, we have used the relative 𝑙2 error [Rousselle et al. 2011]

with a signed log transformation [Kettunen et al. 2019] for the loss:

L =
1

𝑁

𝑁∑︁
𝑖=1

∥𝜏 (ˆ𝜃𝑖) − 𝜏 (𝜃𝑖)∥2
𝑎𝑣𝑔(𝜏 (𝜃𝑖))2 + 𝜖

, (14)

where 𝜏 (𝜃𝑖) = 𝑠𝑖𝑔𝑛(𝜃𝑖)𝑙𝑜𝑔(1 + |𝜃𝑖 |) and 𝜖 = 0.01. Also, 𝑁 and

𝑎𝑣𝑔(𝜏 (𝜃𝑖)) are the total pixel count and the average intensity of

Fig. 9. Example images in our training dataset.We have randomized the pub-
lic scenes (Bathroom, Bedroom, Car2, Classroom, Dining-room, Spaceship,
and Wooden staircase) by transforming the camera views and materials,
and generated the training images using the randomized scenes.

the color 𝜏 (𝜃𝑖), respectively. Given such a configuration, the num-

ber of our network parameters is roughly 0.54M, which is much

smaller than those of recent learning-based denoisers (e.g., 5.84M

and 9.28M for [Bako et al. 2017] and [Yu et al. 2021], respectively).

5 RESULTS AND DISCUSSIONS
This section verifies that our JS combiner can improve different

types of unbiased and biased rendering pairs. Specifically, we apply

the combiner to state-of-the-art image denoisers, i.e., the kernel-

predicting neural network (KPCN) [Bako et al. 2017] and auxiliary

feature guided self-attention (AFGSA) [Yu et al. 2021] so that their

path tracing input and denoising output can be integrated into an

improved result.

We compare our combination approach with the recent post-

denoisers, deep combiner (DC) [Back et al. 2020], ensemble denois-

ing (ED) [Zheng et al. 2021], and progressive denoising (PD) [Firmino

et al. 2022]. We also apply our method to a classical but consistent

denoiser, nonlinearly weighted first-order regression (NFOR) [Bit-

terli et al. 2016]. Lastly, we fuse the two rendering images through

our JS combiner, each of which is generated by different light trans-

port algorithms, i.e., bidirectional path tracing (BDPT) [Lafortune

and Willems 1993] and stochastic progressive photon mapping

(SPPM) [Hachisuka and Jensen 2009].

We validate the JS combiner with the various image pairs rendered

using seven test scenes, Dragon, Veach-Ajar, Staircase, Curly-

Hair, Glass-of-Water, Pool, and Bookshelf (as shown in Fig. 10

and 17). We use the Tungsten renderer for the Veach-Ajar, Curly-

Hair, and Glass-of-Water.We employ the PBRT [Pharr et al. 2016]

for the Dragon and Staircase and Mitsuba [Jakob 2010] for the

Pool and Bookshelf.

All timings aremeasured on anAMDRyzen Threadripper 2990WX

CPU and an Nvidia RTX 3090 GPU, and as a numerical metric, we

use the relative 𝑙2 error [Rousselle et al. 2011].

Training details of learning-based methods. We have used the same

training dataset for all the supervised learning methods, including

ours, for a fair comparison. We have generated 1284 image sets (90%

for training and 10% for validation) using scenes in a public reposi-

tory [Bitterli 2016] (see some examples in Fig. 9). Specifically, we

have used the path tracing implementation of the Tungsten renderer

for generating the pairs of noisy and reference images. We have

followed the sample counts (i.e., 32 and 32K samples per pixel (spp))

used in [Yu et al. 2021] when rendering the image pairs. Given the

dataset, we have trained KPCN and AFGSA using the public imple-

mentations (including parameter settings) released by the authors.

ACM Trans. Graph., Vol. 41, No. 6, Article 262. Publication date: December 2022.

262:8 • Jeongmin Gu, Jose A. Iglesias-Guitian, and Bochang Moon

128 / 0.01522
280.0 s (280.0 / 0.01 / -)

64 / 0.01495
19.3 s (16.0 / 3.3 / -)

64 / 0.01037
16.5 s (16.0 / 0.04 / 0.5)

56 / 0.00657
18.2 s (14.0 / 3.8 / 0.4)

64 / 0.00877
16.0 s (16.0 / 0.01 / -)

56 / 0.01706
20.6 s (14.0 / 6.6 / 0.02)

62 / 0.00531
15.9 s (15.5 / 0.02 / 0.4)

64 / 1.37751
 16.0 s (16.0 / - / -)

Veach-ajar

Dragon 64 / 0.06241
40.9 s (40.9 / - / -)

64 / 0.02596
44.5 s (40.9 / 3.6 / -)

60 / 0.02118
44.3 s (38.4 / 5.4 / 0.5)

60 / 0.01303
43.0 s (38.4 / 4.2 / 0.4)

64 / 0.03591
40.9 s (40.9 / 0.01 / -)

64 / 0.01826
40.9 s (40.9 / 0.02 / 0.02)

60 / 0.01416
38.8 s (38.4 / 0.02 / 0.4)

spp / relative l2
total (sam. / den. / post-den.)

AFGSAOurs (KPCN)PD (KPCN)PT

16 / 0.00606
12.6 s (9.0 / 3.6 / -)

12 / 0.00423
 12.7 s (6.8 / 5.4 / 0.5)

14 / 0.00311
 12.5 s (7.9 / 4.2 / 0.4)

16 / 0.00530
9.0 s (9.0 / 0.01 / -)

16 / 0.00793
9.0 s (9.0 / 0.02 / 0.02)

14 / 0.00359
8.3 s (7.9 / 0.02 / 0.4)

16 / 0.38333
9.0 s (9.0 / - / -)

Staircase

AFGSAOurs (KPCN)DC (KPCN)PT

Ours (AFGSA)

Ours (AFGSA)

Ours (AFGSA)

DC (AFGSA)

PD (AFGSA)

PD (AFGSA)

Reference (64 K)

Reference (16 K)

Reference (64 K)AFGSAOurs (KPCN)DC (KPCN)

AFGSAOurs (KPCN)DC (KPCN)PT Ours (AFGSA)PD (AFGSA) Reference (64 K)KPCN

AFGSAOurs (KPCN)PD (KPCN)PT Ours (AFGSA)DC (AFGSA) Reference (64 K)KPCN

KPCN

KPCN

KPCNPT

128 / 0.01906
280.0 s (280.0 / - / -)

128 / 0.01190
283.6 s (280.0 / 3.6 / -)

128 / 0.01420
280.5 s (280.0 / 0.04 / 0.5)

124 / 0.00422
275.9 s (271.3 / 4.2 / 0.4)

124 / 0.00987
278.5 s (271.3 / 7.2 / 0.02)

126 / 0.00424
276.0 s (275.6 / 0.02 / 0.4)

Curly-hair

512 / 0.02887
68.8 s (68.8 / - / -)

518 / 0.01735
72.9 s (69.6 / 3.3 / -)

512 / 0.01009
73.9 s (68.8 / 4.6 / 0.5)

512 / 0.00667
73.0 s (68.8 / 3.8 / 0.4)

512 / 0.00736
 68.8 s (68.8 / 0.02 / 0.02)

508 / 0.00685
 68.7 s (68.3 / 0.02 / 0.4)

512 / 0.02240
68.8 s (68.8 / 0.01 / -)

Glass-of-water

spp / relative l2
total (sam. / den. / post-den.)

spp / relative l2
total (sam. / den. / post-den.)

spp / relative l2
total (sam. / den. / post-den.)

spp / relative l2
total (sam. / den. / post-den.)

Fig. 10. Equal-time comparisons between our technique and the post-denoisers (DC and PD). We report total rendering times and their breakdowns (i.e.,
sampling, denoising, and post-denoising times). We apply these combination methods, including ours, to the recent learning-based denoisers, KPCN and
AFGSA. The existing methods do not consistently reduce the errors of their input denoisers (e.g., DC for the Veach-Ajar and PD for the Veach-Ajar and
Staircase). On the other hand, our method consistently improves the visual quality and numerical accuracy of the input denoisers. The supplemental includes
the full-resolution images.

We have allocated enough training times for the methods and then

selected the best epoch using the validation set.

We have generated the biased inputs for learning-based post-

denoisers (PD and ours) using the trained KPCN and AFGSA. Then,

we have trained ours and the network of PD using the path trac-

ing input and denoising output pairs. For the PD, we have used

the public code provided by the authors. For ours, the image patch

and batch sizes have been set to 128 × 128 and 4 respectively, and

we have trained our network for 50 epochs using the Adam opti-

mizer [Kingma and Ba 2014] with a learning rate of 0.0001, and it has

taken approximately eight hours for training. We have implemented

our framework using Tensorflow [Abadi et al. 2015].

Comparisons with post-denoisers. We compare our technique with

DC and PD in Figs. 10 and 11. DC improves the input denoisers

(KPCN and AFGSA) for relatively small sample counts but does not

prevent the denoisers from being worse than the unbiased PT. PD

makes the learning-based denoisers have lower errors than the PT,

but it deteriorates their input denoisers for the Veach-Ajar and

Staircase scenes even up to large sample counts (e.g., up to 2K spp

for the Veach-Ajar and 1K for the Staircase in Fig. 11). On the

other hand, our method consistently improves the state-of-the-art

denoisers by forcing those to dominate the unbiased PT.

We also compare our technique with ED in Figs. 12 and 13. While

ED was originally designed for combining multiple denoising es-

timates that can be arbitrary, an effective input configuration can

be the combination of a consistent denoiser (NFOR) and a learning-

based one (KPCN or AFGSA). Also, one may consider a combination

of the unbiased input and a learning-based denoiser, i.e., the same

input configuration as our technique. The figures show that the ED

with the unbiased and biased input pair can produce much higher

errors than its biased input due to the fundamental challenge in the

error analysis. When the ED takes a consistent denoiser (NFOR) in

place of the unbiased input, their combination can be robust and

inherit the consistency of the NFOR. However, the combined results

ACM Trans. Graph., Vol. 41, No. 6, Article 262. Publication date: December 2022.

Neural James-Stein Combiner for Unbiased and Biased Renderings • 262:9
re

la
tiv

e
l2

(lo
g

sc
al

e)

spp (log scale)
(e) Glass-of-water

spp (log scale)
(c) Staircase

spp (log scale)
(d) Curly-hair

spp (log scale)
(b) Veach-ajar

spp (log scale)
(a) Dragon

Fig. 11. Numerical convergences of denoisers (KPCN and AFGSA) and post-denoisers (PD, DC, and ours). The KPCN and AFGSA effectively reduce the
errors of the unbiased input (PT) for the Staircase and Veach-Ajar but deteriorate the PT for the other scenes due to their slow convergence. PD improves
the convergence rates of KPCN and AFGSA but degenerates the input denoisers for the Staircase and Veach-Ajar scenes. It indicates that an MSE-based
technique can be theoretically appealing, but in practice, a robust correction can be challenging due to the difficulty of an accurate MSE estimation. DC does
not require the error analysis on biased inputs, but it is noticeable that DC does not improve the convergence rates of the biased inputs. On the other hand,
our technique consistently improves the input denoisers.

do not always have lower errors than their inputs, even in this case.

Also, additional usage of a classical method introduces a noticeable

computational overhead to the post-denoiser since such a classical

method (e.g., NFOR) typically requires an expensive optimization.

It indicates that a robust post-correction guided by MSE-based op-

timization can be challenging in practice since their post-correction

mainly relies on an accurate error analysis of input denoisers. On

the other hand, our JS combiner does not require the precise esti-

mation of per-pixel MSEs of an input denoiser. As shown in Eq. 13,

it only needs the estimated variance of the unbiased input (e.g., PT).

This relaxation allows us to improve an input denoiser consistently

while preventing the denoiser from being worse than the unbiased

input.

In addition to the same-time comparisons, our supplementary

report includes equal-sample comparisons with the tested post-

denoisers.

Our technique with ensemble denoiser. As our technique can take

an arbitrary pair of unbiased and biased rendering images as input,

one can feed an unbiased input and the post-denoising results of

ED to our method. To verify this compatibility with ED, we use a

learning-based denoiser (AFGSA) and a consistent denoiser (NFOR)

as their input denoisers. Fig. 14 compares the numerical accuracy of

EDwith andwithout our additional post-correction. The EDwithout

ourmethod improves one of their input (AFGSA) but fails to enhance

another input (NFOR) consistently. It also produces slightly higher

errors than the unbiased PT for the Curly-Hair scene with 2K spp.

On the other hand, our method improves the accuracy of the ED

and allows the ED to produce lower errors than its unbiased and

biased inputs.

Joint training of KPCN with our technique. We treat a learning-

based denoiser as a black box like the other post-denoisers. An

attractive alternative is to directly integrate the localized JS com-

biner into a denoising neural network and train this combined one.

We insert the localized JS combiner, which takes an unmodified

biased input 𝑌 , into the KPCN networks for diffuse and specular

components respectively, so that the JS combiner takes the denois-

ing output generated by their output kernels. Note that the original

networks do not internally produce the dual-buffered denoising out-

puts, and thus we do not utilize the practical optimization (Sec. 4.3).

For the estimated variance (Eq. 6), we exploit eight convolutional lay-

ers where the last one produces the weights𝑤𝜎
𝑖
. We do not change

the other parts of the existing networks. This integration into an

denoising neural network is straightforward, but the KPCN jointly

trained with the JS combiner produces much-improved numerical

results than without our method, as shown in Fig. 15. In particu-

lar, its convergence rates improve while dominating the unbiased

counterpart.

Comparisons with a consistent denoiser. One may consider feeding

a consistent denoiser to our technique as a biased input. NFOR has

a strong convergence due to its sophisticated bandwidth adapta-

tion, but it does not necessarily indicate that it can produce more

accurate denoising estimates than its unbiased input for all image

local regions. Our method can help a denoiser avoid its worst-case

scenarios per local region (i.e., image blocks), and thus even con-

sistent methods can benefit from the dominance property of the

JS combiner. Note that our method has not been trained with this

biased input, and thus this test with the unseen input can be techni-

cally challenging. Nonetheless, our method improves the consistent

denoiser even for large sample counts (e.g., 2K), as shown in Fig. 16.

Comparisons with BDPT and SPPM. We also demonstrate that one

can combine unbiased and biased methods with fast convergence

rates. A typical example is the pair of BDPT and SPPM, each of

which produces the correct rendering result in the limit. Note that

our training dataset did not include BDPT and SPPM results. As

a result, combining the two inputs can be technically challenging

since SPPM estimates can have different statistical properties (e.g.,

high-frequency noise on glossy surfaces) compared to the trained

denoising inputs (KPCN and AFGSA). We have used the BDPT

and SPPM implementation (and built-in parameters for the light

transport algorithms) in the Mitsuba renderer.

In Fig. 17 and Fig. 18, we compare the JS combiner to our two

input methods (BDPT and SPPM) visually and numerically, given

equal-time budgets. For example, the reported rendering times for

our technique are the sum of the input generation and inference

ACM Trans. Graph., Vol. 41, No. 6, Article 262. Publication date: December 2022.

262:10 • Jeongmin Gu, Jose A. Iglesias-Guitian, and Bochang Moon

42 / 0.05776
 91.9 s (91.9 / - / -)

36 / 0.00893
88.3 s (78.8 / 9.5 / -)

40 / 0.01748
 91.1 s (87.5 / 3.6 / -)

36 / 0.01917
91.9 s (78.8 / 10.8 / 2.3)

32 / 0.01047
92.6 s (70.0 / 20.3 / 2.3)

38 / 0.00830
87.7 s (83.1 / 4.2 / 0.4)

spp / relative l2
total (sam. / den. / post-den.)

Curly-hair

118 / 0.11821
15.9 s (15.9 / - / -)

48 / 0.04813
13.5 s (6.5 / 7.0 / -)

118 / 0.02873
15.9 s (15.9 / 0.01 / -)

100 / 0.04617
 15.5 s (13.4 / 0.03 / 2.0)

32 / 0.02901
13.3 s (4.3 / 7.0 / 2.0)

96 / 0.01700
13.3 s (12.9 / 0.02 / 0.4)

spp / relative l2
total (sam. / den. / post-den.)

Glass-of-water

34 / 0.11773
21.7 s (21.7 / - / -)

20 / 0.03601
22.3 s (12.8 / 9.5 / -)

34 / 0.03839
21.7 s (21.7 / 0.01 / -)

32 / 0.03567
22.8 s (20.5 / 0.03 / 2.3)

16 / 0.03485
22.0 s (10.2 / 9.5 / 2.3)

32 / 0.02086
20.9 s (20.5 / 0.02 / 0.4)

spp / relative l2
total (sam. / den. / post-den.)

Dragon

PT NFOR AFGSA ED (PT, AFGSA) ED (NFOR, AFGSA) Ours (AFGSA) Reference (64K spp)

84 / 1.09690
21.0 s (21.0 / - / -)

64 / 0.01495
23.0 s (16.0 / 7.0 / -)

68 / 0.01466
20.3 s (17.0 / 3.3 / -)

42 / 0.29112
22.4 s (10.5 / 9.9 / 2.0)

16 / 0.03258
22.9 s (4.0 / 16.3 / 2.0)

64 / 0.00637
20.2 s (16.0 / 3.8 / 0.4)

spp / relative l2
total (sam. / den. / post-den.)

Veach-ajar

PT NFOR KPCN ED (PT, KPCN) ED (NFOR, KPCN) Ours (KPCN) Reference (64K spp)

34 / 0.17571
19.1 s (19.1 / - / -)

20 / 0.00465
20.8 s (11.3 / 9.5 / -)

34 / 0.00315
19.1 s (19.1 / 0.01 / -)

32 / 0.03774
20.3 s (18.0 / 0.03 / 2.3)

16 / 0.00436
20.8 s (9.0 / 9.5 / 2.3)

32 / 0.00199
18.4 s (18.0 / 0.02 / 0.4)

spp / relative l2
total (sam. / den. / post-den.)

Staircase

PT NFOR AFGSA ED (PT, AFGSA) ED (NFOR, AFGSA) Ours (AFGSA) Reference (16K spp)

PT NFOR AFGSA ED (PT, AFGSA) ED (NFOR, AFGSA) Ours (AFGSA) Reference (64K spp)

PT NFOR KPCN ED (PT, KPCN) ED (NFOR, KPCN) Ours (KPCN) Reference (64K spp)

Fig. 12. Equal-time comparisons between our technique and ED. We use a consistent denoiser (NFOR) and a learning-based one (KPCN or AFGSA) as
the input of ED, i.e., ED (NFOR, KPCN) and ED (NFOR, AFGSA). We also test ED with the same input configuration as ours (i.e., PT and a learning-based
technique). When ED combines an unbiased input (PT) and learning-based denoising results (KPCN or AFGSA) like our technique, their combined results
exhibit high-frequency noise propagated from the unbiased one (PT) due to the difficulty in estimating the per-pixel MSE of their inputs. In this case, the ED
fails to reduce the errors of its biased input for the Veach-Ajar, Staircase and Glass-of-water scenes. Feeding consistent denoising results (NFOR) instead
of the unbiased PT to ED produces visually enhanced output but still shows higher errors than one of its input denoisers for the Veach-Ajar, Staircase,
Curly-Hair and Glass-of-Water scenes. On the other hand, our method robustly improves our input denoiser (KPCN and AFGSA) given the same-time
budgets. We include the full-resolution images in the supplemental material.

time. To generate our two inputs, we allocate roughly equal times

for BDPT and SPPM, respectively. As a result, the BDPT and SPPM

techniques, which are compared in the figures, use approximately

twice more rendering times than our input BDPT and SPPM.

As shown in Fig. 17, BDPT produces more accurate results than

SPPM for glossy surfaces since SPPM relies on the classical dis-

tributed ray tracing [Cook et al. 1984] when a ray hits glossy sur-

faces [Hachisuka and Jensen 2009]. On the other hand, SPPM gen-

erates smoother results than BDPT for caustics and diffuse surfaces.

Our technique locally blends the two input estimates with distinct

strengths and produces visually improved results. It can also be

observed that the combiner consistently enhances the numerical

accuracy of the input methods in Fig. 18.

One may also consider an improved input in the place of SPPM.

For example, CPPM [Lin et al. 2020] (i.e., an optimized SPPM) that

adjusts the bandwidths for its photon density estimation can be

used. Also, VCM [Georgiev et al. 2012], which fuses BDPT and

SPPM, can be an option for our biased input, and in this case, our

framework takes BDPT and VCM estimates as an input pair, similar

to the demonstrated combination with the post-denoisers. We leave

these additional tests to future work since our combined estimates

can be improved when taking more accurate input (Sec. 4.2).

ACM Trans. Graph., Vol. 41, No. 6, Article 262. Publication date: December 2022.

Neural James-Stein Combiner for Unbiased and Biased Renderings • 262:11

spp (log scale)
(d) Curly-hair

spp (log scale)
(c) Staircase

re
la

tiv
e

l2
 (l

og
 sc

al
e)

spp (log scale)
(e) Glass-of-water

spp (log scale)
(b) Veach-ajar

spp (log scale)
(a) Dragon

Fig. 13. The ED, which takes a pair of unbiased and biased images, i.e., ED (PT, KPCN) and ED (PT, AFGSA), shows much higher errors than the other biased
results, including ours. This MSE-based method can be more robust when it takes only biased inputs, i.e., ED (NFOR, KPCN) and ED (NFOR, AFGSA), but
produces higher errors than its input NFOR for the Dragon (from 256 to 2K spp) and Curly-hair (from 16 to 128 spp and 2K spp) scenes. Our technique,
however, robustly improves our input denoisers and shows the best errors over the tested ranges.

re
la

tiv
e

l2
(lo

g
sc

al
e)

spp (log scale)
(a) Dragon

spp (log scale)
(b) Curly-hair

Fig. 14. Numerical convergences of ED with and without our technique.
We employ AFGSA and NFOR for the two denoising inputs of ED, and our
method takes an unbiased image (PT) and the results of ED as input. Our
technique improves the accuracy of our biased input (ED) consistently.

spp (log scale)
(b) Glass-of-water

spp (log scale)
(a) Dragon

re
la

tiv
e

l2
(lo

g
sc

al
e)

Fig. 15. Numerical accuracy of KPCN jointly trained with our technique. We
have integrated our localized JS combiner into the existing KPCN network
and trained the combined network, and this joint training improves the
numerical convergences of the learning-based denoiser.

Our computational overhead. To produce the variant 𝑌 ∗
, we re-

quire the dual-buffered biased images (𝑌𝐴
and𝑌𝐵

in Sec. 4.3). Specif-

ically, for NFOR, we use its dual-buffered output images, and thus it

does not require an additional process for the method. For KPCN,

we generate the two biased images by sharing its output kernels

inferred from its original input buffers, and thus additional overhead

is negligible. For AFGSA, we run the method twice, and its denoising

time increases from 0.01 s to 0.02 s for 1024 × 1024 images.

spp (log scale)
(c) Staircase

re
la

tiv
e

l2
(lo

g
sc

al
e)

spp (log scale)
(a) Curly-hair

re
la

tiv
e

l2
(lo

g
sc

al
e)

spp (log scale)
(b) glass-of-water

spp (log scale)
(d) veach-ajar

Fig. 16. Numerical comparisons of our technique and a consistent denoiser,
NFOR. Our technique takes the biased estimates of the classical denoising
technique as a biased input and improves its numerical accuracy by com-
bining it with its unbiased input (PT).

Our own runtime overhead, which excludes the sampling and

dual-buffer generation times, only depends on the image resolutions

of the inputs. Specifically, generating the two regression outputs 𝑌𝐴

and 𝑌𝐵
(Sec. 4.3) takes 0.40 s, and the other parts for the variance

estimation and JS combination take 0.02 s for 1024×1024 images. As

a result, the total overhead for the inference is 0.42 s for 1024× 1024

images. The equal-time comparisons in Figs. 10 and 12 verify that

our computational overhead can be acceptable for the tested offline

rendering scenarios.

Analysis of the independence between unbiased and biased input.
We have shown that the error of combined estimates Θ̂𝑐 is equal to

or smaller than the unbiased input 𝑋𝑐 , under the independence as-

sumption between the unbiased and biased input in Sec. 4.2. Strictly

ACM Trans. Graph., Vol. 41, No. 6, Article 262. Publication date: December 2022.

262:12 • Jeongmin Gu, Jose A. Iglesias-Guitian, and Bochang Moon

121.0 s / 0.08584121.0 s / 0.00661 120.4 s / 0.00180

36.7 m / 0.0352936.7 m / 0.07092 36.7 m / 0.00727

(a) BDPT

Pool

Veach-ajar

(b) SPPM (c) Ours (d) Reference
64K spp

1M spp

Veach-ajarBookshelf

time / relative l2

time / relative l2

Fig. 17. Equal-time comparisons of our technique with BDPT and SPPM. BDPT (a) produces less noisy results on glossy surfaces (the zoomed areas in
yellow-colored boxes) than SPPM (b). For example, the results in the first row are on a glossy surface with both diffuse and specular reflections, and those in
the third-row show rendering estimates on a shiny bookshelf with glossy reflections. On the other hand, SPPM generates smoother rendering results for the
caustics and diffuse surfaces. Our technique (c) locally fuses their rendering estimates and produces visually more pleasing results. The reference images (d)
are rendered using BDPT with large sample counts.

re
la

tiv
e

l2
(lo

g
sc

al
e)

time (m)
(a) Pool

time (m)
(b) Bookshelf

Fig. 18. Numerical convergence plots for the Pool and Bookshelf scenes.
Our technique consistently produces more accurate results than the BDPT
and SPPM by locally combining their output images.

speaking, the assumption does not hold for denoising (also post-

denoising) applications since denoised results correlate to the de-

noising input (i.e., PT images).

As an alternative, one can alleviate such dependency by feeding

a crossed-pair (𝑋𝐴
, 𝑌𝐵

) or (𝑋𝐵
, 𝑌𝐴

) to the JS combiner instead of

using the full-buffer input (𝑋 , 𝑌 ∗
), and then blend the two combined

images using the alpha blending scheme (Eq. 12). Table 2 compares

the JS combiner that uses either an entire buffer or dual buffers. Their

numerical quality is overall similar, but the combination using the

full buffer generates slightly more accurate results. The JS combiner

is a biased estimator, and thus averaging its combination results

from each half-buffer does not reduce its bias by half. Consequently,

this empirical study leads us to employ our practical option that

uses the full-buffered pair (𝑋 , 𝑌 ∗
) for the combination.

Limitations and future work. The error analysis for the JS com-

biner (Sec. 4.2) shows that its MSE is equal to or smaller than the

error of an unbiased input for an image block, i.e., 𝐸∥𝛿 (𝑋𝑐 , 𝑌𝑐) −
Θ𝑐 ∥2 ≤ 𝐸∥𝑋𝑐 − Θ𝑐 ∥2 . However, it does not guarantee that individ-
ual pixels in the combined image are more accurate than those in

the unbiased one. As a result, the per-pixel MSEs for some pixel

colors in the combined image (e.g., 𝐸∥ ˆ𝜃𝑖 − 𝜃𝑖 ∥2) can be higher than

the errors of unbiased pixel colors (e.g., 𝐸∥𝑥𝑖 − 𝜃𝑖 ∥2). Furthermore,

the MSEs only explain the expected behavior of the actual 𝑙2 errors

(e.g., ∥ ˆ𝜃𝑖 −𝜃𝑖 ∥2), and thus the oracle per-pixel errors in the combined

image can be higher than those of the unbiased input. In addition to

these technical limitations inherited from the JS theories, we assume

that the unbiased estimates have a homogeneous variance in a small

window Ω𝑐 and estimate the variance per pixel. Strictly speaking,

it is an approximation since the variance can vary even within the

local area.

In Fig. 19, we visualize the relative 𝑙2 errors per pixel, i.e., the

oracle errors computed using the references, for our two inputs

and our output. Our output estimates have higher errors than the

unbiased input at some pixels (e.g., visualized by reddish colors in

Fig. 19 (d)). Nonetheless, our per-pixel errors are mostly smaller

than the unbiased input (and the biased input), and it allows our

final result to have higher numerical accuracy, i.e., a smaller average

of the per-pixel errors for all pixels, than the unbiased input.

One can feed temporally processed rendering images to our frame-

work, and in this case, we can correct the input images indepen-

dently frame by frame. However, it can be more desirable to exploit

the animated sequences both spatially and temporally. Also, it can

be necessary to train our neural network using various unbiased

ACM Trans. Graph., Vol. 41, No. 6, Article 262. Publication date: December 2022.

Neural James-Stein Combiner for Unbiased and Biased Renderings • 262:13

Table 2. Numerical accuracy of the JS combiner that uses either full-buffered
or dual-buffered input pair.

scene spp PT KPCN JS (full) JS (dual)

Curly-hair

128 0.01906 0.01190 0.00414 0.00432

512 0.00477 0.00855 0.00197 0.00216

2K 0.00122 0.00737 0.00084 0.00102

scene spp PT AFGSA JS (full) JS (dual)

Glass

of

water

128 0.11176 0.02817 0.01316 0.01340

512 0.02887 0.02240 0.00661 0.00697

2K 0.00715 0.01978 0.00275 0.00275

0.00

PT, 0.01198
512 spp

KPCN, 0.00170
512 spp

0.00065
512 spp

relative l2

BDPT, 0.13906
18.0 m

SPPM, 0.06702
18.2 m

0.00727
36.2 m

relative l2

(a) Unbiased input (b) Biased input (c) Our method (d) Diff. of (a) and (c)

- 0
.0

2
 0

.0
2

- 0
.4

 0
.4

0.000.020.00 0.020.00 0.020.00

0.50.0 0.50.0 0.50.0

Fig. 19. Analysis of our limitation for the Staircase and Pool scenes (top
and bottom rows, respectively). We visualize the relative 𝑙2 errors per pixel
for our input ((a) and (b)) and output images (c). Also, the signed differences
in the errors between the unbiased input and our estimates are shown in
(d). For example, the pixels with bluish colors indicate that our method
has lower errors than the unbiased, and our technique shows higher errors
on the pixels with reddish colors. While the average errors of our method
(0.00065 and 0.00727 in (c)) are smaller than the two inputs (0.01198 and
0.13906 in (a) and 0.00170 and 0.06702 in (b)), our per-pixel errors for some
pixel colors can be higher than the unbiased input, as visualized in (d).

and biased rendering estimates (e.g., BDPT and SPPM images) to

achieve higher combination quality. Lastly, we would like to op-

timize the presented framework to support real-time rendering

scenarios (e.g., [Bitterli et al. 2020; Chaitanya et al. 2017]) using

lightweight neural networks (e.g., [Thomas et al. 2020]). We leave

these interesting investigations as future work.

6 CONCLUSION
This paper introduces the JS estimator, an established theory in

statistics, to the rendering field. We specialize the general estimator

into a localized estimator that optimally combines unbiased and

biased image blocks per pixel through a deep neural network. A

noteworthy property of this combination is that the error of the

locallymerged estimates can be equal to or smaller than the unbiased

input, evenwith a severely biased image𝑌 . We take advantage of this

technical property of the JS combiner for assisting an input denoiser

to have smaller errors than its unbiased input. It enables a non-

consistent denoiser (i.e., learning-based methods) to be consistent

while improving its error reduction rates more robustly than MSE-

based post-denoisers. We believe that our technical approach can

inspire additional rendering applications of the JS estimator where

unbiased and biased rendering pairs are available.

ACKNOWLEDGMENTS
We appreciate the anonymous reviewers for the constructive com-

ments. We also thank the following authors and artists for each

scene: Mareck, SlykDragko, Wig42, NovaZeeke and thecali (training

scenes in Fig. 9), aXel (Glass-of-water), Cem Yuksel (Curly-hair),

NewSee20135 (Staircase), Ondřej Karlík (Pool), Tiziano Porte-

nier (Bookshelf for the Mitsuba porting), and Christian Schüller

(Dragon). Bochang Moon is the corresponding author of the pa-

per. This work was supported by the National Research Founda-

tion of Korea (NRF) funded by the Korea government (MSIT) (No.

2020R1A2C4002425) and Ministry of Culture, Sports and Tourism

and Korea Creative Content Agency (No. R2021080001). Jose A.

Iglesias-Guitian was supported by a 2021 Leonardo Grant for Re-

searchers and Cultural Creators, BBVA Foundation. He also acknowl-

edges the UDC-Inditex InTalent programme, the Spanish Ministry

of Science and Innovation (AEI/PID2020-115734RB-C22 and AEI/

RYC2018-025385-I), Xunta de Galicia (ED431F 2021/11) and EU-

FEDER Galicia (ED431G 2019/01).

REFERENCES
Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig

Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-

mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing

Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dande-

lion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,

Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent

Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin

Wattenberg, MartinWicke, Yuan Yu, and Xiaoqiang Zheng. 2015. TensorFlow: Large-

Scale Machine Learning on Heterogeneous Systems. https://www.tensorflow.org/

Software available from tensorflow.org.

Jonghee Back, Binh-Son Hua, Toshiya Hachisuka, and Bochang Moon. 2020. Deep

combiner for independent and correlated pixel estimates. ACM Trans. Graph. 39, 6
(2020), 12 pages.

Steve Bako, Thijs Vogels, Brian McWilliams, Mark Meyer, Jan Novák, Alex Harvill,

Pradeep Sen, Tony Derose, and Fabrice Rousselle. 2017. Kernel-predicting convo-

lutional networks for denoising Monte Carlo renderings. ACM Trans. Graph. 36, 4
(2017), 14 pages.

Alvin J Baranchik. 1964. Multiple regression and estimation of the mean of a multivariate
normal distribution. Technical Report. STANFORD UNIV CALIF.

Alvin J Baranchik. 1970. A family of minimax estimators of the mean of a multivariate

normal distribution. The Annals of Mathematical Statistics (1970), 642–645.
Benedikt Bitterli. 2016. Rendering resources. https://benedikt-bitterli.me/resources/.

Benedikt Bitterli, Fabrice Rousselle, Bochang Moon, José A Iglesias-Guitián, David

Adler, Kenny Mitchell, Wojciech Jarosz, and Jan Novák. 2016. Nonlinearly weighted

first-order regression for denoising monte carlo renderings. In Computer Graphics
Forum, Vol. 35. Wiley Online Library, 107–117.

Benedikt Bitterli, Chris Wyman, Matt Pharr, Peter Shirley, Aaron Lefohn, and Wojciech

Jarosz. 2020. Spatiotemporal Reservoir Resampling for Real-Time Ray Tracing with

Dynamic Direct Lighting. ACM Trans. Graph. 39, 4 (2020), 17 pages.
Chakravarty R Alla Chaitanya, Anton S Kaplanyan, Christoph Schied, Marco Salvi,

Aaron Lefohn, Derek Nowrouzezahrai, and Timo Aila. 2017. Interactive reconstruc-

tion of Monte Carlo image sequences using a recurrent denoising autoencoder. ACM
Trans. Graph. 36, 4 (2017), 12 pages.

Rudrasis Chakraborty, Yifei Xing, Minxuan Duan, and Stella X Yu. 2020. C-SURE:

Shrinkage Estimator and Prototype Classifier for Complex-Valued Deep Learning.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops. 80–81.

Robert L Cook, Thomas Porter, and Loren Carpenter. 1984. Distributed ray tracing.

In Proceedings of the 11th annual conference on Computer graphics and interactive
techniques. 137–145.

Bradley Efron and Carl Morris. 1977. Stein’s paradox in statistics. Scientific American
236, 5 (1977), 119–127.

ACM Trans. Graph., Vol. 41, No. 6, Article 262. Publication date: December 2022.

https://www.tensorflow.org/

262:14 • Jeongmin Gu, Jose A. Iglesias-Guitian, and Bochang Moon

Arthur Firmino, Jeppe Revall Frisvad, and Henrik Wann Jensen. 2022. Progressive

Denoising of Monte Carlo Rendered Images. Computer Graphics Forum (2022).

https://doi.org/10.1111/cgf.14454

Iliyan Georgiev, Jaroslav Krivánek, Tomas Davidovic, and Philipp Slusallek. 2012. Light

transport simulation with vertex connection and merging. ACM Trans. Graph. 31, 6
(2012), 10 pages.

Michaël Gharbi, Tzu-Mao Li, Miika Aittala, Jaakko Lehtinen, and Frédo Durand. 2019.

Sample-Based Monte Carlo Denoising Using a Kernel-Splatting Network. ACM
Trans. Graph. 38, 4 (2019), 12 pages.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative Adversarial

Networks. arXiv:1406.2661 [stat.ML]

Edwin J Green and William E Strawderman. 1991. A James-Stein type estimator for

combining unbiased and possibly biased estimators. J. Amer. Statist. Assoc. 86, 416
(1991), 1001–1006.

Toshiya Hachisuka and Henrik Wann Jensen. 2009. Stochastic Progressive Photon

Mapping. ACM Trans. Graph. 28, 5 (2009), 8 pages.
Jean Hausser and Korbinian Strimmer. 2009. Entropy inference and the James-Stein

estimator, with application to nonlinear gene association networks. Journal of
Machine Learning Research 10, 7 (2009).

Yuchi Huo and Sung-eui Yoon. 2021. A survey on deep learning-based Monte Carlo

denoising. Computational Visual Media 7, 2 (2021), 169–185.
Wenzel Jakob. 2010. Mitsuba renderer. http://www.mitsuba-renderer.org.

James T Kajiya. 1986. The rendering equation. In Proceedings of the 13th annual
conference on Computer graphics and interactive techniques. 143–150.

Nima Khademi Kalantari, Steve Bako, and Pradeep Sen. 2015. A machine learning

approach for filtering Monte Carlo noise. ACM Trans. Graph. 34, 4 (2015), 12 pages.
Markus Kettunen, Erik Härkönen, and Jaakko Lehtinen. 2019. Deep Convolutional

Reconstruction for Gradient-Domain Rendering. ACM Trans. Graph. 38, 4 (2019),
12 pages.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980 (2014).
Eric P. Lafortune and Yves D. Willems. 1993. Bi-directional path tracing. In Proceed-

ings of Third International Conference on Computational Graphics and Visualization
Techniques (Compugraphics ’93). Alvor, Portugal, 145–153.

Tzu-Mao Li, Yu-Ting Wu, and Yung-Yu Chuang. 2012. SURE-based optimization for

adaptive sampling and reconstruction. ACM Trans. Graph. 31, 6 (2012), 9 pages.
Zehui Lin, Sheng Li, Xinlu Zeng, Congyi Zhang, Jinzhu Jia, Guoping Wang, and Dinesh

Manocha. 2020. CPPM: chi-squared progressive photon mapping. ACM Trans.
Graph. 39, 6 (2020), 12 pages.

Jonathan H Manton, Vikram Krishnamurthy, and H Vincent Poor. 1998. James-Stein

state filtering algorithms. IEEE Transactions on Signal Processing 46, 9 (1998), 2431–

2447.

Bochang Moon, Nathan Carr, and Sung-Eui Yoon. 2014. Adaptive rendering based on

weighted local regression. ACM Trans. Graph. 33, 5 (2014), 14 pages.
Bochang Moon, Steven McDonagh, Kenny Mitchell, and Markus Gross. 2016. Adaptive

Polynomial Rendering. ACM Trans. Graph. 35, 4 (2016), 10 pages.
Jacob Munkberg and Jon Hasselgren. 2020. Neural denoising with layer embeddings.

In Computer Graphics Forum, Vol. 39. Wiley Online Library, 1–12.

Ryan S Overbeck, Craig Donner, and Ravi Ramamoorthi. 2009. Adaptive wavelet

rendering. ACM Trans. Graph. 28, 5 (2009), 12 pages.
Matt Pharr. 2018. Guest Editor’s Introduction: Special Issue on Production Rendering.

ACM Trans. Graph. 37, 3 (2018), 4 pages.
Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2016. Physically based rendering: From

theory to implementation. Morgan Kaufmann.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-net: Convolutional

networks for biomedical image segmentation. In International Conference on Medical
image computing and computer-assisted intervention. Springer, 234–241.

Fabrice Rousselle, Claude Knaus, and Matthias Zwicker. 2011. Adaptive sampling and

reconstruction using greedy error minimization. ACM Trans. Graph. 30, 6 (2011),
12 pages.

Fabrice Rousselle, Claude Knaus, and Matthias Zwicker. 2012. Adaptive Rendering with

Non-Local Means Filtering. ACM Trans. Graph. 31, 6 (2012), 11 pages.
Fabrice Rousselle, Marco Manzi, and Matthias Zwicker. 2013. Robust denoising using

feature and color information. In Computer Graphics Forum, Vol. 32. Wiley Online

Library, 121–130.

Pradeep Sen and Soheil Darabi. 2012. On filtering the noise from the random parameters

in Monte Carlo rendering. ACM Trans. Graph. 31, 3 (2012), 15 pages.
Charles Stein and Willard James. 1961. Estimation with quadratic loss. In Proc. 4th

Berkeley Symp. Mathematical Statistics Probability, Vol. 1. 361–379.
Charles M Stein. 1981. Estimation of the mean of a multivariate normal distribution.

The annals of Statistics (1981), 1135–1151.
Manu Mathew Thomas, Karthik Vaidyanathan, Gabor Liktor, and Angus G. Forbes.

2020. A Reduced-Precision Network for Image Reconstruction. ACM Trans. Graph.
39, 6 (2020), 12 pages.

Thijs Vogels, Fabrice Rousselle, Brian McWilliams, Gerhard Röthlin, Alex Harvill, David

Adler, Mark Meyer, and Jan Novák. 2018. Denoising with kernel prediction and

asymmetric loss functions. ACM Trans. Graph. 37, 4 (2018), 15 pages.
Yue Wu, Brian Tracey, Premkumar Natarajan, and Joseph P. Noonan. 2013. James–Stein

Type Center Pixel Weights for Non-Local Means Image Denoising. IEEE Signal
Processing Letters 20, 4 (2013), 411–414.

Bing Xu, Junfei Zhang, Rui Wang, Kun Xu, Yong-Liang Yang, Chuan Li, and Rui Tang.

2019. Adversarial Monte Carlo denoising with conditioned auxiliary feature modu-

lation. ACM Trans. Graph. 38, 6 (2019), 12 pages.
Jiaqi Yu, Yongwei Nie, Chengjiang Long, Wenju Xu, Qing Zhang, and Guiqing Li. 2021.

Monte Carlo Denoising via Auxiliary Feature Guided Self-Attention. ACM Trans.
Graph. 40, 6 (2021), 13 pages.

Shaokun Zheng, Fengshi Zheng, Kun Xu, and Ling-Qi Yan. 2021. Ensemble denoising

for Monte Carlo renderings. ACM Trans. Graph. 40, 6 (2021), 17 pages.
Matthias Zwicker,Wojciech Jarosz, Jaakko Lehtinen, BochangMoon, Ravi Ramamoorthi,

Fabrice Rousselle, Pradeep Sen, Cyril Soler, and S-E Yoon. 2015. Recent advances

in adaptive sampling and reconstruction for Monte Carlo rendering. In Computer
graphics forum, Vol. 34. Wiley Online Library, 667–681.

A THE MSE OF THE LOCALIZED JS COMBINER
We derive the MSE of our JS combiner 𝛿 (𝑋𝑐 , 𝑌𝑐) as the following:
𝐸∥𝛿 (𝑋𝑐 , 𝑌𝑐) − Θ𝑐 ∥2

= 𝐸∥𝛿 (𝑋𝑐 , 𝑌𝑐) − 𝑋𝑐 + 𝑋𝑐 − Θ𝑐 ∥2

= 𝐸∥𝛿 (𝑋𝑐 , 𝑌𝑐) − 𝑋𝑐 ∥2 + 𝑝𝜎2𝑐 + 2𝐸

[
(𝛿 (𝑋𝑐 , 𝑌𝑐) − 𝑋𝑐)𝑇 (𝑋𝑐 − Θ𝑐)

]
= 𝐸∥𝛿 (𝑋𝑐 , 𝑌𝑐) − 𝑋𝑐 ∥2 + 𝑝𝜎2𝑐 + 2𝐸

[
(𝛿 (𝑋𝑐 , 𝑌𝑐) − Θ𝑐 + Θ𝑐 − 𝑋𝑐)𝑇 (𝑋𝑐 − Θ𝑐)

]
= 𝐸

[(𝑝 − 2)2𝜎4𝑐
∥𝑋𝑐 − 𝑌𝑐 ∥2

]
− 𝑝𝜎2𝑐 + 2𝐸

[
𝛿𝑇 (𝑋𝑐 , 𝑌𝑐) (𝑋𝑐 − Θ𝑐)

]
= 𝐸

[(𝑝 − 2)2𝜎4𝑐
∥𝑋𝑐 − 𝑌𝑐 ∥2

]
− 𝑝𝜎2𝑐 + 2𝜎2𝑐 𝐸

[∑︁
𝑖∈Ω𝑐

𝜕𝛿𝑖 (𝑋𝑐 , 𝑌𝑐)
𝜕𝑥𝑖

]
,

where the equality between the last two lines is due to the Stein’s

lemma [Stein 1981]. Also, the last term can be further reduced to:

𝐸

[∑︁
𝑖∈Ω𝑐

𝜕𝛿𝑖 (𝑋𝑐 , 𝑌𝑐)
𝜕𝑥𝑖

]
= 𝑝 − 𝑝 (𝑝 − 2)𝜎2𝑐

∥𝑋𝑐 − 𝑌𝑐 ∥2
+ 2(𝑝 − 2)𝜎2𝑐
∥𝑋𝑐 − 𝑌𝑐 ∥2

= 𝑝 − 𝐸

[(𝑝 − 2)2𝜎2𝑐
∥𝑋𝑐 − 𝑌𝑐 ∥2

]
.

Therefore the MSE of the combiner is compactly represented as

𝐸∥𝛿 (𝑋𝑐 , 𝑌𝑐) − Θ𝑐 ∥2 = 𝑝𝜎2𝑐 − 𝐸

[(𝑝 − 2)2𝜎4𝑐
∥𝑋𝑐 − 𝑌𝑐 ∥2

]
.

We can compute an upper bound of the error using the Jensen’s

inequality [Green and Strawderman 1991]:

𝐸∥𝛿 (𝑋𝑐 , 𝑌𝑐) − Θ𝑐 ∥2 ≤ 𝑝𝜎2𝑐 − (𝑝 − 2)2𝜎4𝑐
𝐸∥𝑋𝑐 − 𝑌𝑐 ∥2

= 𝑝𝜎2𝑐 − 𝜎4𝑐 (𝑝 − 2)2

Λ𝑇𝑐 Λ𝑐 + 𝑝𝜉2𝑐 + 𝑝𝜎2𝑐
.

ACM Trans. Graph., Vol. 41, No. 6, Article 262. Publication date: December 2022.

https://doi.org/10.1111/cgf.14454
https://arxiv.org/abs/1406.2661

	Abstract
	1 Introduction
	2 RELATED WORK
	3 Background: The James-Stein Estimator
	4 Our Neural James-Stein Combiner
	4.1 Localized James-Stein Combiner
	4.2 Theoretical Discussion on the James-Stein Combiner
	4.3 Optimization for the Localized James-Stein Combiner
	4.4 Implementation of the Neural James-Stein Combiner

	5 Results and Discussions
	6 CONCLUSION
	Acknowledgments
	References
	A The MSE of the Localized JS Combiner

