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1 ADDITIONAL EVALUATION

1.1 Our combination results using classical alternatives

We employ a deep neural network to estimate the unknown variance

of an unbiased input and the per-pixel blending factor (see Eqs. 6 and

12 in the main paper). A simple alternative is to apply a Gaussian

filter to the sample variance of the unbiased input colors and set

the alpha-blending factor to a fixed value (e.g., 0.5) so that the

James-Stein combiner can be performed without relying on the

neural network. Specifically, we assign two fixed bandwidths to the

Gaussian filter (i.e., 𝜎 = 1, 3). We also test a more straightforward

approach that directly employs the input sample variance without

additional smoothing.

In Fig. 1, we visualize the variances estimated by the simple

alternatives and our neural network, respectively, and show their

combination results via our localized JS combiner. As shown in the

figure, the JS combiner produces lower errors than its unbiased

inputs when using any of the simple estimation approaches above.

Nonetheless, the simple alternatives tend to leave high-frequency

noise in their results for the Glass-of-water scene where firefly

noise easily shows up. Note that the estimated per-pixel variances

play a key role for the JS combiner since they directly control its

shrinkage factor, which should be determined to minimize the errors

in the final result. A deep neural network allows us to infer per-

pixel optimal parameters by a learning process (e.g., supervised

learning), generating more robust combination results than the

tested alternatives.
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1.2 Equal-sample comparisons

In Figs. 2 and 3, we compare ourmethodwith existing post-denoisers,

PD [Firmino et al. 2022], DC [Back et al. 2020], and ED [Zheng et al.

2021], given equal-sample counts. Note that the main paper in-

cludes equal-time comparisons (see Figs. 10 and 12 in the paper). As

shown in the figures, the existingmethods sometimes fail to improve

their input, e.g., PD for the Veach-Ajar and Staircase, DC for the

Veach-Ajar, and ED with NFOR for the Dragon and Curly-hair

scenes. Our method, however, outperforms the previous techniques

while improving our input denoisers consistently.
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Reference (64K spp)(a) Unbiased stddev. (b) Gaussian blurred 
stddev. (σ = 1)

(c) Gaussian blurred 
stddev. (σ = 3)

(d) Ours stddev.

(e) JS using (a)
0.15767

(f) JS using (b)
0.08538

(h) JS using (d)
0.02023

Unbiased input (64 spp)
0.23628

(g) JS using (c)
0.03887

Reference (64K spp)(a) Unbiased stddev. (b) Gaussian blurred 
stddev. (σ = 1)

(c) Gaussian blurred 
stddev. (σ = 3)

(d) Ours stddev.

(e) JS using (a)
0.01326

(f) JS using (b)
0.00701

(h) JS using (d)
0.00605

Unbiased input (64 spp)
0.03797

(g) JS using (c)
0.00643

Glass-of-water
 relative l2

Curly-hair
relative l2

Fig. 1. James-Stein combination results with and without the use of a deep neural network. We show the sample variances of the unbiased input colors (a), their

filtering results by Gaussian filtering ((b) and (c)), and our estimated variance using a neural network (d). We take the square root of the estimated variances,

i.e., estimated standard deviations, to show the values more clearly. When taking the sample variance without additional smoothing, the JS combination

results (e) exhibit noise propagated from the unbiased input. We can mitigate the noise using the classical Gaussian filter, but their results (f) and (g) still

suffer from residual noise, especially for the Glass-of-water scene that exhibits fireflies. Our current approach (h), which exploits a deep neural network,

enables the JS combiner to produce more accurate results without such noticeable noise.
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Dragon PT
32 / 20.5 s / 0.12504

KPCN
32 / 24.1 s / 0.03269

DC (KPCN)
32 / 26.4 s / 0.02760

Ours (KPCN)
32 / 25.1 s / 0.01920

AFGSA
32 / 20.5 s / 0.03878

PD (AFGSA)
32 / 20.5 s / 0.02792

Ours (AFGSA)
32 / 20.9 s / 0.02086

Reference (64K spp)
spp / time / relative l2

PT
 64 / 16.0 s / 1.37751

KPCN
64 / 19.3 s / 0.01495

DC (AFGSA)
64 / 16.5 s / 0.01037

Ours (KPCN)
64 / 20.2 s / 0.00637

AFGSA
64 / 16.0 s / 0.00877

PD (KPCN)
64 / 22.6 s / 0.01628

Ours (AFGSA)
64 / 16.4 s / 0.00536

Reference (64K spp)
spp / time / relative l2

PT
16 / 9.0 s / 0.38333

KPCN
 16 / 12.6 s / 0.00606

DC (KPCN)
16 / 15.0 s / 0.00348

Ours (KPCN)
16 / 13.6 s / 0.00265

AFGSA
16 / 9.0 s / 0.00530

PD (AFGSA)
16 / 9.0 s / 0.00793

Ours (AFGSA)
16 / 9.4 s / 0.00300

Reference (16K spp)
spp / time / relative l2

PT
32 / 70.0 s / 0.07594

KPCN
32 / 73.6 s / 0.01839

DC (AFGSA)
32 / 70.6 s / 0.01837

Ours (KPCN)
32 / 74.6 s / 0.00912

AFGSA
32 / 70.0 s / 0.01783

PD (KPCN)
32 / 77.2 s / 0.01742

Ours (AFGSA)
32 / 70.4 s / 0.00877

Reference (64K spp)
spp / time / relative l2

PT
1K / 2.3 m / 0.01418

KPCN
1K / 2.3 m / 0.01443

DC (KPCN)
1K / 2.4 m / 0.00794

.

Ours (KPCN)
1K / 2.4 m / 0.00436

PD (AFGSA)
1K / 2.4 m / 0.00482

Ours (AFGSA)
1K / 2.4 m / 0.00439

AFGSA
1K / 2.4 m / 0.02101

Reference (64K spp)
spp / time / relative l2

Veach-ajar

Staircase

Curly-hair

Glass-of-water

Fig. 2. Equal-sample comparisons between our technique and the post-denoisers, DC and PD. We test the two recent learning-based denoisers, KPCN [Bako

et al. 2017] and AFGSA [Yu et al. 2021], as the input denoisers of the post-denoisers and our technique. While DC and PD sometimes produce higher errors

than the input denoisers, e.g., DC for the Veach-Ajar and PD for the Staircase and Veach-Ajar scenes, our technique consistently improves the input methods.
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PT
64 / 40.9 s / 0.06241

NFOR
64 / 50.4 s /0.01870

AFGSA
64 / 40.9 s / 0.03591

ED (PT, AFGSA)
64 / 43.3 s / 0.02010

ED (NFOR, AFGSA)
64 / 52.3 s / 0.01888

Ours (AFGSA)
 64 / 41.3 s / 0.01358

Reference (64K spp)
spp / time / relative l2

Dragon

PT
32 / 8.0 s / 2.85562

NFOR
32 / 15.0 s / 0.02350

KPCN
32 / 11.3 s / 0.02899

ED (PT, KPCN)
32 / 19.9 s / 0.50040

ED (NFOR, KPCN)
32 / 26.9 s / 0.01752

Ours (KPCN)
32 / 12.2 s / 0.00934

Reference (64K spp)
spp / time / relative l2

Veach-ajar

PT
16 / 9.0 s / 0.38333

NFOR
16 / 18.5 s / 0.00542

AFGSA
16 / 9.0 s / 0.00530

ED (PT, AFGSA)
16 / 11.3 s / 0.06865

ED (NFOR, AFGSA)
16 / 20.8 s / 0.00436

Ours (AFGSA)
16 / 9.4 s / 0.00300

Reference (16K spp)
spp / time / relative l2

Staircase

PT
256 / 34.4 s / 0.05687

NFOR
256 / 43.9 s / 0.01709

AFGSA
256 / 34.4 s / 0.02588

ED (PT, AFGSA)
256 / 36.7 s / 0.01992

ED (NFOR, AFGSA)
256 / 45.7 s / 0.01239 

Ours (AFGSA)
256 / 34.8 s / 0.00958

Reference (64K spp)
spp / time / relative l2

Glass-of-water

Curly-hair PT
64 / 140.0 s / 0.03797

NFOR
64 / 149.5 s / 0.00675

KPCN
64 / 143.6 s / 0.01473

ED (PT, KPCN)
64 / 153.1 s / 0.01336

ED (NFOR, KPCN)
64 / 162.6 s / 0.00720

Ours (KPCN)
64 / 144.6 s / 0.00618

Reference (64K spp)
spp / time / relative l2

Fig. 3. Equal-sample comparisons between our technique and ED with two input configurations. As the first input configuration for ED, we use PT and a

learning-based denoiser (KPCN and AFGSA), which is the same setting as ours. We also exploit a consistent denoiser (NFOR) and a learning-based denoiser

for their input. It is noticeable that ED can become robust when it takes only reasonable estimates, like NFOR and KPCN or NFOR and AFGSA. Nevertheless,

it sometimes fails to improve its inputs (see the results for the Dragon and Curly-hair scenes). On the other hand, our technique shows a consistent error

reduction for the tested learning-based methods.
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