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Figure 1: Stereoscopic interactive session rendering a photorealistic 3D reconstruction of the HAND CT scan.

ABSTRACT

Scientific visualizations using physically-based lighting models play
a crucial role in enhancing both image quality and realism. In the
domain of medical visualization, this trend has gained significant
traction under the term cinematic rendering (CR). It enables the
creation of 3D photorealistic reconstructions from medical data,
offering great potential for aiding healthcare professionals in the
analysis and study of volumetric datasets. However, the adoption of
such advanced rendering for immersive virtual reality (VR) faces
two main limitations related to their high computational demands.
First, these techniques are frequently used to produce pre-recorded
videos and offline content, thereby restricting interactivity to pre-
defined volume appearance and lighting settings. Second, when
deployed in head-tracked VR environments they can induce cyber-
sickness symptoms due to the disturbing flicker caused by noisy
Monte Carlo renderings. Consequently, the scope for meaningful
interactive operations is constrained in this modality, in contrast with
the versatile capabilities of classical direct volume rendering (DVR).

In this work, we introduce an immersive 3D medical visualization
system capable of producing photorealistic and fully interactive
stereoscopic visualizations on head-mounted display (HMD) devices.
Our approach extends previous linear regression denoising to enable
real-time stereoscopic cinematic rendering within AR/VR settings.
We demonstrate the capabilities of the resulting VR system, like its
interactive rendering, appearance and transfer function editing.

*e-mail: javier.taibo@udc.es
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1 INTRODUCTION

The importance of medical volume visualization for dissecting and
comprehending three-dimensional (3D) anatomy is undeniable. Di-
rect volume rendering (DVR) is a computer graphics technique often
used in medical imaging to reconstruct and render 3D visualizations
directly from cross-sectional images, i.e. CT or MRI scans, without
the need for intermediate surface reconstruction or segmentation.
Modern DVR has evolved into advanced ray-casting implemen-
tations that harness the computational power of parallel graphics
processing units (GPUs) to expedite the visualization process [6].
Such evolution has also led to exciting extensions of DVR into
physically-based rendering algorithms [14, 39]. For example, Monte
Carlo volumetric path-tracing (VPT) allowed photo-realistic three-
dimensional reconstructions from cross-sectional images, i.e. CT
or MRI scans [16, 35]. This approach has taken significant traction
under the name of cinematic rendering (CR) [26, 29].

The integration of augmented and virtual reality (AR/VR) tech-
nology into medical visualization provides additional cues for the
identification of critical structures. Tracking capabilities of HMDs
can enhance the perception of volumetric visualizations, as users
can freely move around the reconstructed volume and examine it
from every angle.

The accessibility to head-mounted display (HMD) systems for
medical visualization unlocks new opportunities, presenting novel
avenues for diagnosis [12], surgery planning [24], and medical ed-
ucation [27]. However, the seamless integration of DVR, CR, and
other advanced volume rendering techniques with VR presents its
own challenges. One of the principal challenges lies in achieving
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the high refresh rates necessary for an optimal VR experience. VR
necessitates consistent and rapid update rates to mitigate the emer-
gence of cybersickness symptoms, a discomforting and disorienting
phenomenon [17]. These requirements become even more challeng-
ing as we consider the integration of physically-based rendering,
i.e., CR or VPT, typically used for progressive [16, 21, 33] or offline
volume rendering [9]. Progressive rendering approaches render a
quick preview during interaction and refine the image once the inter-
action stops. In VR, however, the interaction never stops, and those
techniques are not directly applicable to head-tracked environments
since they produce noticeable temporal flicker.

In this work, we propose a novel method to integrate stereoscopic
Monte Carlo VPT while achieving the demanding high refresh rates
imperative to prevent VR-induced discomfort. Our main objective is
to provide users with an experience that is not only comfortable but
also innovative and deeply engaging when interacting with volumet-
ric data. Our approach enables users to employ common interactions
typically associated with direct volume rendering (DVR) and cine-
matic rendering (CR) while delivering updates of photorealistic 3D
reconstructions rendered in real-time with physically-based Monte
Carlo VPT, tailored explicitly for stereoscopic VR.

Our main contributions can be summarized as follows:

• We introduce a new virtual reality rendering framework that
adapts previous weighted linear regression denoising to sup-
port interactive volumetric path tracing on stereoscopic HMDs.
Our approach requires only one sample-per-pixel, and extends
previous work with a more precise stereo reprojection leverag-
ing dual motion vectors.

• We showcase a practical virtual reality implementation of a
visualization system in the medical domain, demonstrating
feasible interactive rendering and appearance manipulation
for 3D medical data in real time. Our approach addresses
common interactive operations for DVR within an AR/VR set-
ting, achieving unprecedented quality for interactive cinematic
rendering within commodity VR settings.

2 RELATED WORK

2.1 Immersive DVR visualizations for virtual reality
Immersive virtual reality (VR) can serve as a fruitful platform for
enhancing direct volume rendering (DVR) visualizations. We can
find, from large tiled display walls and projection environments
using 3D shutter glasses [7], to light-field displays enhancing depth-
perception with eye-naked setups [2, 11]. For instance, drawing
inspiration from the CAVE [3], Jadhav and Kaufman [12] proposed
a dedicated visualization workbench for radiologists combining head
tracking and shutter glasses to interact with DVR visualizations.

Stereoscopic volume rendering is often based on volume ray-
casting [1] to generate high-quality stereoscopic images. Nowadays,
there is a wide variety of implementations aimed at amortizing
the costs of DVR for stereoscopic HMD devices [4, 34, 37]. For
example, Waschk and Krüger [37] introduced a method to adjust
image quality during rendering without suffering a perceptual loss,
based on adjusting rendering resolution in the peripheral vision [20].
Unlike cited prior works implementing traditional DVR for VR,
our work differs in achieving higher quality for fully interactive
cinematic rendering (VPT) on stereoscopic HMD devices and still
supporting most common DVR manipulations.

2.2 Denoising global illumination for DVR
The perceptual benefits of applying more advanced illumination
algorithms for 3D scientific visualizations are being studied both in
computer graphics [18] and in the medical visualization domain [5,
26,29]. In the beginning, researchers pursued DVR implementations
that supported various effects, i.e., dynamic ambient occlusion and

color bleeding [13, 28, 39]. This trend also found its counterpart
in VR, where e.g., Scholl et al. [31] extended DVR with shadow
rays and global illumination. However, since DVR techniques in
scientific visualization historically relied on ray marching algorithms,
i.e. Rezk-Salama [30], they typically suffer from undesired bias. The
extension of unbiased Monte Carlo (MC) path-tracing to volumetric
participating media is commonly known as volumetric path tracing
(VPT) [25].

Kroes et al. [16] and Liu et al. [19] demonstrated that MC pro-
gressive VPT using GPUs could achieve interactive frame rates for
DVR unbiased rendering. These progressive rendering solutions can
produce quick previews during interaction and refine the image once
the interaction stops. However, in VR the interaction never stops,
and those techniques are not directly applicable to head-tracked
environments as the temporal flicker introduced by MC noise would
significantly increase the cybersickness symptoms [37]. Thus, re-
cent work focused on different sampling and filtering techniques to
reduce the MC noise. For instance, Radziewsky et al. [35] proposed
a progressive estimate for joint importance sampling of visibility
information and to suppress the occurrence of fireflies. Adaptive
temporal sampling for VPT [21] attacked the problem by adaptive
temporal reprojection and dedicating more samples on critical re-
gions. Unfortunately, their suggested sampling budgets exceeded
our available resources for current HMD resolutions. Other authors
also proposed offline denoising based on deep neural networks [9]
and a weighted linear regression scheme for real-time denoising [10],
all in the context of medical data visualization to reduce MC noise
and temporal flicker.

Given our sampling budget limitations, limited to a maximum
of one sample-per-pixel (spp) in average, we decided to build on
top of a Kroes et al. [16] progressive VPT framework and extend
previous real-time weighted linear regression denoising [10] to work
on stereoscopic HMD devices.

In summary, we propose an immersive 3D medical visualiza-
tion system based on stereoscopic volume rendering on commodity
HMD devices. Our approach can render fully interactive photoreal-
istic 3D visualizations of medical data in real-time, using MC-VPT
with one sample-per-pixel (spp) and enabling its use for VR applica-
tions thanks to a new spatio-temporal denoiser for stereoscopic VPT.
We believe our approach can offer a deeply engaging VR experience,
mitigating the risk of cybersickness symptoms caused by the tem-
poral flicker induced by MC noise and overcoming the limitations
that have previously hindered akin DVR interactivity for cinematic
rendering (VPT) approaches.

3 SYSTEM OVERVIEW

In this section, we aim to provide a general description of our immer-
sive 3D visualization system and its associated rendering pipeline,
shown in Fig. 2. Our ultimate goal is to create an engaging expe-
rience for 3D medical visualization within immersive VR. Conse-
quently, our system shares similar requirements to most VR applica-
tions. First, we must render stereoscopic images at high-resolutions
for each eye, commonly exceeding 1024×1024 per eye (resulting
in combined resolutions of 2K and over). Moreover, our system
must operate with high frame rate, ideally 60-90 Hz, to prevent user
discomfort.

Additionally, our immersive system needs to be designed to ad-
dress the following challenging tasks simultaneously: a) generating
photorealistic, high-quality 3D stereoscopic visualizations in VR,
using computationally intensive volumetric path tracing (VPT); and
b) supporting familiar visualization tools utilized for DVR within
the new rendering pipeline. These tasks pose a formidable challenge,
especially when considering the aforementioned requirements im-
posed by VR visualization.

With this demanding scenario in mind, the architecture of the
system (see Fig. 2) is structured around four main modules: i) the



Figure 2: General overview of our immersive 3D stereoscopic rendering system. Our system enables the creation of photorealistic 3D stereoscopic
visualizations in VR, while providing users with common visualization tools and widgets for exploring volumetric data, akin to DVR but enhanced
with cinematic rendering quality and low-latency response times as required by HMD devices.

VPT rendering engine, ii) the VR interaction engine, iii) the VR
3D user interface, and iv) the rendering synchronization. These
components will address the various challenges presented earlier, so
we will dedicate the rest of this section to introducing these modules
in more detail.

3.1 VPT rendering engine
The Monte Carlo VPT (MC-VPT) rendering engine is at the core
of our system, mostly responsible for generating real-time images
from volumetric datasets, which are then composed and presented
to the HMD user. Physically-based global illumination with VPT
offers an elegant and versatile solution, covering a wide variety of
lighting effects, including indirect global illumination and shadow-
ing [25]. This meets our specifications for producing high-quality
visualizations of 3D medical scans. Our real-time framework is built
upon progressive MC-VPT for DVR [16], a common approach that
generates quick previews during interaction and refines the image
once the interaction stops.

However, VPT previews tend to produce noisy approximations
of the volume rendering integral (VRI) due to its stochastic nature,
especially given the limited number of rendering samples achieved
under real-time constraints. This issue becomes more pronounced
when targeting high resolutions, presenting a greater challenge in
the context of stereoscopic rendering. In particular, VPT noise
degenerates into temporal flicker when a user interacts with the
parameters of a DVR scene, e.g., modifying lighting or transfer
functions, since VPT regenerates a new image restarting the MC
integration process. Within the context of VR, user interaction is
continuous, thus making progressive rendering unsuitable for head-
tracked environments.

For all these reasons, we deemed it essential to incorporate a VPT
denoiser in our system to filter out as much MC noise as possible
without compromising image sharpness. Intuitively, there exists a
promising opportunity for exploiting spatio-temporal coherence in
stereoscopic rendering, thus a specialized denoiser taking advantage
of the stereoscopic coherence seems appropriate. Given the stringent
requirements for real-time execution, we opted to build upon a linear
regression approach given its suitability for interactive and real-time
rendering systems [10, 23]. An additional advantage of linear re-
gression approaches is their independence from resource-intensive

pre-training or pre-processing steps, making them especially desir-
able in the context of medical data visualization.

The ultimate goal of our stereoscopic denoising is to address
MC variance noise in VPT results. We aim to achieve this by im-
plementing a real-time denoising framework capable of leveraging
the spatial and temporal coherence among pixel colors and stereo-
scopic views, ultimately delivering enhanced numerical and visual
outcomes. Since this embraces one of the key contributions of our
system we will cover it in further detail in Sec. 4.

3.2 VR interaction engine
This is the central module that orchestrates the VR immersive system.
It is responsible for the frame synchronization among the different
system components. It implements the main interaction loop and
interfaces with the VR hardware. This interaction with the VR
hardware is made through the OpenXR standard API, so the system
is abstracted from the hardware being used. The results presented in
this work have been implemented in a prototype using HTC Vive Pro,
but the system has been designed and successfully tested to work on
other HMD devices (e.g., Oculus Rift, Oculus Rift S, and HTC Vive
XR Elite). The main interaction loop follows this sequence:

• Receive input events from the user and VR hardware.

• Wait for the start of the next frame/iteration and retrieve the
presentation time for the upcoming frame.

• Predict hands and head poses for the presentation time of the
next frame.

• Dispatch a render task request to the VPT rendering engine
through the render synchronization module (see Sec. 3.4).

• Acquire OpenGL textures for displaying images to be compos-
ited on the HMD.

• Receive VPT rendering results and transfer them to OpenGL
textures using the CUDA-OpenGL interoperability API.

• Initiate the rendering of the user interface through the VR 3D
User Interface module (see Sec. 5). This module superimposes
the UI elements over the VPT rendering output.



• Transmit the final images, stored in the previously acquired
OpenGL textures, to the OpenXR compositor for presentation
to the user via the HMD.

3.3 VR user interface
The VR user interface (VR-UI) module is responsible for the render-
ing and interaction through the tools offered to the user to manipulate
the visualization of the volumetric datasets. Given the inherent com-
putational intensity of the VPT rendering engine, we opted not to
burden it unnecessarily with interface rendering using the MC path
tracer. Instead, we pursued a more efficient approach by adopting a
hybrid strategy, harnessing the GPU’s highly optimized capabilities
for surface raster rendering. As OpenXR needs interfacing with
a graphics API to send the images to be composited in the HMD,
we already had a rendering context well suited for the task. We
selected OpenGL as the API to interface with OpenXR and render
the interface as an overlay on the VPT-rendered image.

To manage the contents of the VR-UI in an efficient way, we
chose OpenSceneGraph (OSG) as a high-level abstraction layer over
OpenGL. All the VR-UI is composed in a scene graph structure,
updated with the user inputs received from the VR interaction en-
gine module (mainly head and controllers’ poses as well as their
associated input events). The rendering engine for VR-UI configures
a scene graph with a stereoscopic setup (one camera per eye). The
cameras render to FBOs where the OpenGL textures (coming from
OpenXR swapchain images) are attached as render targets.

The tools and 3D widgets available in the VR-UI are implemented
as pluggable components. The VR-UI module receives user inputs,
updates internal scene graph nodes, and sends commands to the VPT
rendering engine to alter the volume visualization. A meaningful
selection of such tools and 3D widgets is later discussed in Sec. 5.

3.4 Render synchronization
The render synchronization module acts as a crucial intermediary
connecting the rendering engine and the interaction engine. It serves
as a synchronization point between the threads of both modules,
adhering to the timing directives established by the interaction en-
gine. Additionally, this module is responsible for encapsulating
CUDA-OpenGL interoperability operations.

This module offers flexibility by supporting different modes of
operation. It can work in synchronous mode, offering the advantage
of experiencing minimal latency. Alternatively, it can operate in a
pipelined strategy, where tasks are parallelized across both threads,
at the cost of slightly increasing the latency in exchange for a higher
frame rate.

The system latency is influenced by the HMD hardware and
managed through the OpenXR API. The interaction engine timing
aligns with OpenXR frame times. Ideally, when meeting the frame
time budget in synchronous mode, the actual system latency closely
matches the frame duration. However, the perceived user latency
should be even lower (ideally zero), as the OpenXR runtime predicts
the pose of the user’s hands and head at the future frame presen-
tation time. When the frame time isn’t met, the OpenXR runtime
activates motion reprojection to ensure the user experiences smooth
movement without frame drops. In the pipelined mode (not used for
this work), the system latency increases by one frame time. Thus,
the perceived latency in the pipelined mode could be reduced by
introducing an additional prediction (outside of OpenXR) for the
camera and hands poses, e.g. using a Kalman filter.

4 STEREOSCOPIC RENDERING

The classical approaches for stereoscopic volume rendering [1, 8]
require: (i) to select an appropriate viewpoint position (e.g., left-
eye, right-eye, or the middle point between the left-eye and the
right-eye; (ii) apply the chosen volume rendering scheme for the
selected viewpoint; (iii) re-project the results or intermediate results

Figure 3: Stereoscopic VPT rendering framework. Our stereo repro-
jection (SR) reprojects the frame estimate among both eyes virtually
improving the sample count of the MC estimates feed into a weighted
Recursive Least Squares (wRLS) denoiser operating in real-time to
produce the final output for each eye of our rendering framework.

of the previous step onto the right-image or left-image or both, as
it may correspond. Thus, reprojection has been one of the typical
approaches used to save computation and amortizing the cost of one
view into the other.

However, in VPT it is really challenging to successfully recon-
struct a whole frame from its stereo counterpart without introducing
noticeable bias. Thus our selected approach is to compute a frame
estimate with at least one sample-per-pixel for each separate eye and
leverage per-pixel sample reprojection to increase the virtual sample
count (understood as the equivalent number of samples being used
to estimate one pixel of the image). Our aim is to find a reasonable
trade-off to harness the available computational resources while mit-
igating potential sources of cybersickness symptoms (excessive MC
variance) or introducing undesirable bias.

Therefore, our stereoscopic rendering can be summarized in three
main stages: i) estimating of the contribution of one light path, as
an approximation of the volume rendering integral for each eye; ii)
performing the stereoscopic reprojection among both eyes; and iii)
running a real-time spatio-temporal denoising. For our approach,
we will leverage a VPT state-of-the-art denoising based on weighted
recursive least squares (wRLS) [10] as it suits well for VPT and the
strict real-time requirements of our rendering framework.

4.1 Stereoscopic VRI

The volume rendering integral (VRI) can be approximated by com-
puting only a small number of light transport trajectories (light paths)
in a single frame. So, the j-th pixel color in the rendered image I
can be represented as the following integral:

I j =
∫
P

f j(x̄)dx̄, (1)



where P is the space of all possible light paths in the scene, and
f j(x̄) is the contribution of light path x̄. A common approach for
constructing a light transport path x̄ = (x0,x1, . . . ,xk) ∈P is to
start from the camera at point x0 and extend the path incrementally
segment by segment. When rendering stereoscopic images, each eye
will produce a different light path.

In the context of stereoscopic rendering, we simply extend the
concept of the volume rendering integral (VRI) to account for the
generation of separate views for each eye. Each eye produces a
different light path, resulting in two distinct values, denoted as Ile f t

j

and Iright
j , respectively. These values represent the perceived colors

at the j-th pixel location for the left and right eyes. In the context of
VR, there is generally no chance to compute more than one light path
per eye in one frame. Thus, a frame estimate is usually generated
based on just one sample per pixel.

4.2 Spatio-temporal denoising
To mitigate the MC variance noise we model the ground truth color I j
at the j-th pixel using the following linear regression (corresponding
I to either Ile f t or Iright for simplified notation):

I j = p jβ
T
j +ξ j, (2)

where p j and β j represent the input predictor vector and its coeffi-
cients, respectively. ξ j represents the prediction error of the linear
regression model p jβ

T
j . For brevity’s sake, we shall treat the value

I j as a scalar unless otherwise mentioned, since our denoising is ap-
plied to each color channel independently. Also note that the linear
model represents an approximation of the integral (Equation 1) over
all light path contributions f (x̄) for the j-th pixel.

Ideally, for a given pixel j at frame t, we would compute the real
error by using the values of the ground truth image I j, as e j(t) =
I j(t)− Î j(t). Because the ground truth of the MC integral is not
available in practice, we need to estimate this error using the noisy
MC estimate Ĩ j(t) as the following:

ê j(t) = Ĩ j(t)− Î j(t) = Ĩ j(t)−p j(t)β T
j (t−1), (3)

where p j(t) is the predictor vector concatenating the auxiliary fea-
tures z j(t). Similarly, for stereoscopic rendering, we can refer to
the error of each separate image. Thus, after computing each sepa-
rate image error ê j(t), the model coefficients β j are incrementally
updated at time t [10]:

β j(t) = β j(t−1)+qw
j (t)ê j(t) (4)

qw
j (t) =

P j(t−1)pT
j (t)

λ

w j(t)
+p j(t)P j(t−1)pT

j (t)
, (5)

being P j the inverse covariance matrix of the predictor vectors, λ

the forgetting factor, and w j(t) a weight inversely proportional to
temporal sample variance, as described in wRLS [10].

In our framework, we run in parallel, for both eyes, the aforemen-
tioned linear model regression updates simultaneously. As temporal
denoising auxiliary features (p j) we maintain a stereoscopic tempo-
ral accumulation history buffer, independent for each eye.

4.3 Stereoscopic reprojection
Before running the denoising filter, our rendering framework per-
forms our key contribution, a stereoscopic reprojection in order to
virtually increase the effective number of samples per pixel in the
frame estimates (as shown in Fig. 3).

While the conventional stereoscopic reprojection would involve
reprojecting final pixel colors, our method reprojects intermediate

MC sample estimates among both eyes, just before running the
wRLS denoising filter. This way, our framework can exploit the
spatial coherence more robustly, since the rendering threads are
synchronized among the left and right eye in real-time. Moreover, as
linear regression can predict single-frame changes in the VPT, e.g.,
changes in the dynamic lighting, or transfer function editing, our
stereoscopic framework can react immediately to abrupt changes in
shading.

We estimate per-pixel reprojection vectors υ j (i.e., similar to opti-
cal flow, but for stereoscopic reprojection) using the view-projection
matrix and per-pixel world coordinates of both eyes. Our VPT
rendering engine internally stores buffers with nearest and average
world position coordinates and voxel normals for every pixel in the
image for both current (t) and previous (t−1) frames.

Once a reprojection vector υ j for the j-th pixel is calculated,
we can define a reprojection operation π that obtains the corre-
sponding pixel coordinates q in the adjacent frame (from the other
eye) as q← π(υ j). While previous approaches (like the original
wRLS [10]) already use q to perform reprojection (temporal repro-
jection in their case), we further improve such initial reprojection
coordinates estimating new ones after applying dual motion vectors
for occlusions [38]. Compared with traditional reprojection vectors,
dual motion vectors (or dual reprojection vectors) allowed us to
more accurately estimate reprojection coordinates, improving our
final reprojection result. Implementing dual motion vectors requires
a few additional computations to prevent incorrect reprojections (e.g.
caused by occlusions or disocclusions), but represents a negligible
execution cost when compared to the overall timing of the denoising
process.

To make our stereoscopic reprojection more robust, and mitigate
incorrect reprojections, we perform further tests to confirm whether
the reprojected information from the neighbor-eye corresponds to
a relatively similar world position and shares a similar normal ori-
entation to the samples in the target destination of the reprojection.
Consequently, we establish conservative thresholds to discard dis-
tinct world positions or dissimilar normal orientations. For accepted
reprojections, source and target estimates are blended with equal
weight. If reprojection was previously discarded, we just use the
initially computed color without blending.

5 DVR INTERACTIVE TOOLS AND 3D USER INTERFACE

One of the big advantages of immersive VR is that users can natu-
rally change the point of view by freely moving in 3D space thanks
to the head positional and orientation tracking provided by the HMD
hardware. Also, manipulating and rotating the 3D volume under
study can be done with great precision thanks to the hand controllers
typically accompanying the HMD devices, hand-tracking solutions
or a combination of both. In this system we focused initially on
testing hand-tracker controllers given their great tracking accuracy,
however we do not discard hand-tracking as a perfectly viable alter-
native in the near future.

In the following, we will describe some of the tools we imple-
mented in our system to favor the interaction in VR with photoreal-
istic 3D volume visualizations. We highly recommend consulting
our supplementary video to see the actual visualization system in
action and how these tools could be used as part of our system.

5.1 Dynamic global illumination

Since our stereoscopic rendering is based on a Monte Carlo volu-
metric path tracer, dynamic global illumination is one of the main
advantages we have in our system. We can simulate multiple types
of light sources (casting both hard or soft shadows), and translu-
cency and scattering effects. In Fig.4, we show an example of the
versatile lighting configurations our system can reproduce under
user interactions.



Figure 4: Dynamic lighting and shadowing. (Top) Example of adjusting
a light source to produce hard or soft shadows. (Bottom) Example of
adjusting lighting orientation with respect to the volume data. These
lighting properties can be interactively changed using the VR interface.

Light sources in our system can be manipulated by just selecting
them with one controller, grabbing and moving them as desired to
reposition the lighting direction. Light sources are locked to aim
towards the center of the volume, so the user simply changes the
angle of the light by placing it in 3D space. Our system also supports
adjusting both the size and color of light sources.

5.2 Transfer-function editing
The editing of the transfer function can be done in different ways.
The highest level of control can be reached by directly editing the
curve, usually by placing and moving control points and defining
the ways to interpolate between these points. Control points have
associated parameters defining the appearance of the volume render,
such as opacity, diffuse color, roughness, specular color, or emission
properties.

Editing the transfer function with such a level of control may be
a complex operation even for medical imaging professionals. The
typical use case is a combination of selecting presets, i.e. transfer
functions predefined for a specific kind of volume and intended to
show certain features (skin tissue, bone, muscle...), and then modify
those presets with simpler and more direct actions like the intensity
windowing (IW) [32].

In VR, editing the curve by setting control points could be a te-
dious operation, so we implemented IW, that fits perfectly with VR
interaction. The user can select a preset, visualize the histogram
of the volume density values with the transfer function overlaid on
it and then modify the curve by performing ulterior scaling and/or
offsetting by just moving the hand controller vertically or horizon-
tally in 3D space while holding the trigger (Fig. 5). We show several
sequences in our supplementary video where users manipulate the
transfer function in real time.

5.3 Volume clipping operations
One essential operation when exploring medical datasets is the abil-
ity to perform cuts within the volume to identify the region of interest

Figure 5: Interactive transfer-function editing in VR.

Figure 6: Arbitrary clipping plane using a 3D oriented plane gizmo.

(ROI). These cuts can be either axis-aligned or arbitrarily oriented,
and our system accommodates both types of clipping planes.

For arbitrary-oriented clipping planes, we designed a 3D gizmo
that takes the form of a transparent rectangle with a solid frame
(Fig. 6). At its center, there’s a guiding arrow indicating the direction
of the cut. The user can easily interact with this gizmo by grabbing
it, either directly or from a distance, and effortlessly positioning it
with a simple hand gesture. This intuitive approach has proven to be
highly effective and precise, surpassing the efficiency of traditional
2D mouse-based interfaces when defining arbitrary clipping planes.

In addition to arbitrary clipping planes, our system also supports
axis-aligned clipping planes that can be enabled or inverted along all
three spatial axes in world space. However, the interaction method
for axis-aligned clipping planes differs slightly. These planes are
associated with 2D viewers that allow users to conveniently manipu-
late and configure their positions, providing a comprehensive and
versatile solution for working with various types of clipping planes
within the VR environment.

5.4 Immersive 2D viewer
Radiologists typically refer to 2D images in their routine work.
Thus 3D visualizations are great additions to their decision-making
process. However, it is mandatory for them to be able to operate
and access simultaneously the different anatomical plane views of a
medical scan (i.e. axial, sagittal, and coronal) and interact with the
3D volume based on that information.

We implemented a floating window VR widget to display the 2D
slices of the raw volumetric dataset. The 2D viewers are synchro-
nized with the axis aligned clipping planes that can be applied to
the 3D volume, and allow users to easily enable/disable and relocate
them, as illustrated in Fig. 7.

6 RESULTS AND EVALUATION

6.1 Hardware and medical datasets
We focus our evaluation on two main aspects. First, by studying
the performance and quality enhancement of using our stereoscopic



Figure 7: Immersive 2D slice viewers synchronized and simultane-
ously cutting the volumetric reconstruction.

denoising technique for HMD volume rendering. Second, we show-
case and demonstrate the interaction and rendering capabilities of
our immersive 3D visualization system by interactively exploring
medical datasets in real-time.

Our benchmark system is powered by a Ryzen 9 5950X CPU,
128 GB DDR4 memory, and an Nvidia RTX 3090 Ti GPU driving
our immersive 3D visualization system. For the VR hardware, we
use the HTC Vive Pro Eye HMD, featuring a combined display
resolution of 2560×1440 pixels. We aimed to reach the refresh rate
of 90 Hz, currently found in most high-end HMD systems, to run
our interactive 3D visualization on moderately-sized CT scans.

As medical datasets for our evaluation, we chose MANIX, a
CT scan of a human head with a resolution of 512× 512× 460
voxels, HAND, a CT scan of a human hand with a resolution of
512×512×496 voxels, and MACOESSIX, a lower limbs CT scan
with 512× 461× 512 voxels. To guarantee that each rendering
technique under evaluation uses exactly the same input data, we
captured the actions of a real user interacting with our VR system.
This way, we can fairly compare all techniques. We obtained as
result three pre-recorded sequences, one per dataset. All the transfer
functions used show translucent or semitransparent structures, to
stress on purpose the reprojection on volumetric data, as opposed
to reprojection on surface models. All images were rendered at
a per-eye resolution of 1424×1584 pixels. The reference images
were rendered offline at 2048 spp taking each > 12 sec. to render.

6.2 Benchmarking denoising of stereoscopic VPT
We perform benchmark comparisons both in terms of image quality
metrics and runtime execution time. As quality metrics we report
root mean square error (RMSE) and a perceptual dissimilarity met-
ric [36] (DSSIM) for all frames in the aforementioned pre-recorded
sequences, one per dataset: HAND, MANIX, and MACOESSIX. In
Fig. 8 we show a visual comparison using frames randomly cho-
sen from these sequences1, while the error plots over the whole
sequences are shown in Fig. 9. Next, we discuss the results of
the following techniques: 1 spp and 4 spp with MC-VPT; 1 and
4 spp with the adaptive temporal reprojection (ATR) proposed by
Martschinke et al. [21] 2; 1 spp denoised with weighted recursive
least squares (wRLS) [10] running independently for each eye (EID);
and our extended version of wRLS denoising using stereoscopic re-
projection, named as SR (Ours).

Discussion. The obtained results vary depending on the dataset
under evaluation, the specific transfer function, and the type of back-
ground and lighting conditions. From the three datasets, MANIX
and MACOESSIX demonstrated to be more challenging than HAND,
probably due to the presence of thinner 3D structures that prevented
a more frequent use of the reprojected information. Specifically for

1highlighted using a vertical line in Fig. 9
2the 1 spp version runs in real-time, the 4 spp is an upper bound of their

best possible quality when running their adaptive sampling with max. 4 spp.

Dataset VPT 1spp VPT 2spp VPT 4spp ATR 1spp EID 1spp SR 1spp 2K spp
HAND 10.69 ms 22.92 ms 39.51 ms 21.14 ms 18.91 ms 18.88 ms 21.5 s
MANIX 8.22 ms 15.36 ms 29.57 ms 16.90 ms 16.06 ms 16.16 ms 13.8 s

MACOESSIX 10.02 ms 19.05 ms 36.73 ms 19.49 ms 17.99 ms 18.11 ms 18.6 s

Table 1: Average execution times.

these cases, SR (Ours) seems to perform consistently better with
both metrics (RMSE and DSSIM) than any other real-time technique.
To disambiguate when the two best methods EID and SR perform
similar in terms of quality metrics, we recorded a supplementary
video with a temporal flicker comparison. In that comparison, SR
remains temporally more stable than EID, which makes sense given
the higher virtual sample count used by SR. The ATR technique
showed remarkable temporal stability, mostly for surface-like re-
gions of the volume, but it fails to reduce flicker for pixels that
suffer a hard reset of their history buffer, as it can be noticed in the
temporal flicker comparison in our supplemental (better seen for
MANIX and MACOESSIX). Also, that stability comes at the trade-off
of a per-frame lower quality, as evidenced in all our temporal plots
(Fig. 9). One drawback noticed for ATR is that it has some latency
when editing the lighting conditions, as their heuristic for repro-
jection is based exclusively on per-pixel depth and ray directions,
that do not capture changes in shading. For all these hard cases in
ATR, both EID and SR offer a better reconstruction and a temporally
more stable solution. This behavior is quite desirable in VR/XR, as
temporal flicker is known to be quite disturbing when displayed on
HMD devices. Thus, we conclude that SR offers nowadays a more
sustainable performance for all type of scenarios.

6.3 Interactive DVR operations

We demonstrate the capabilities of our immersive 3D medical vi-
sualization system under different types of user interactions, akin
DVR operations and their functionality. We run multiple live ses-
sions using the system and exploring different medical datasets. We
strongly recommend watching our supplementary video where we
demonstrate the suitability of the proposed technique for its use
in immersive VR experiences for medical visualization, enabling
photorealistic rendering at interactive rates on a commodity PC
platform.

6.4 Performance evaluation and discussion

Table 1 shows the average running times of the VPT rendering
system when used with an HMD setup for VR. The first obvious
conclusion is that simply increasing the number of MC samples is
not a practical alternative, as increasing the number of MC samples
results in a linear growth in rendering time, rapidly exceeding the
available budget in VR. Moreover, the attained image quality of MC-
VPT is greatly surpassed by using adaptive temporal reprojection
(ATR) or denoising approaches (EID and SR). This justifies our
choice of limiting our sampling budget to 1 spp and aims for an
efficient denoising in real-time.

When comparing ATR, the previous wRLS (EID) and the en-
hanced stereoscopic reprojection (SR), running times are still very
similar, as most of the time is consumed by MC-VPT rendering (typ-
ically > 50−60%). The cost of the denoising in both cases (EID and
SR) ranges from 7.84 to 8.22 ms, which, added to the VPT render
time with 1spp, lies close to the render time of 2 spp. Renders with
4 spp nearly double the time of MC-VPT with 1 spp plus SR denois-
ing, and still remain behind ATR or the other denoising approaches.
Thus, given the the discussed trade-offs of each technique regarding
their temporal flicker, and the relatively small performance overhead,
we conclude that adopting SR is the recommended solution for our
interactive 3D medical visualization system in VR.



Figure 8: Benchmark comparison in terms of image quality (RMSE and DSSIM) and runtime performance (ms.). We compare our stereoscopic
denoising approach (SR) to Monte Carlo VPT with 1 and 4 spp per-eye, the adaptive temporal reprojection (ATR) scheme by Martschinke et
al. [21], and also with running a per-eye independent denoising based on wRLS [10] (EID). Our reference image for comparisons took more than
12 sec. per frame to compute with 2048 spp.

7 CONCLUSIONS AND FUTURE WORK

This paper presented an immersive 3D medical visualization system
enabling VPT for stereoscopic virtual reality. Our approach com-
bined stereoscopic rendering with state-of-the-art image reprojection
and denoising techniques to meet the requirements of VR experi-
ences. We extended previous real-time linear regression denoising
(wRLS) for stereo reprojection by leveraging on more precise dual
motion vectors. Our denoising mitigates the disturbing flicker intro-
duced by Monte Carlo noise, and its undesired side effects that harm
the overall VR experience.

We also showcased a practical virtual reality implementation of
our visualization system in the medical domain, demonstrating fea-
sible interactive rendering and appearance manipulation for 3D med-
ical data operating in real-time. Our approach addresses common
interactive operations for DVR within our VR immersive system,
achieving unprecedented quality for interactive cinematic rendering
within PC commodity VR settings.

Our system does not come without limitations. First, the limited
performance of the combined rendering and denoising, which still
leverages on OpenXR motion reprojection to achieve the required
90 Hz in VR; Second, the residual flickering artifacts introduced by
sparse linear model reset operations caused by having a 1 spp input
signal to the linear models. We believe that further investigation
of joint adaptive temporal reprojection (ATR) and linear regression
denoising (wRLS) is worth exploring, since an hybrid approach
could potentially exploit the best of each approach to tackle the
remaining limitations. As future work, we would like to further

optimize our system based on foveated rendering and perceptual
observations of the human visual system, i.e., preattentiveness [15,
22]. Finally, we would be very interested in developing user studies
to verify the adequacy of the proposed rendering and denoising
techniques, as well as assessing better designs for our VR user
interface gathering more feedback together with medical experts.
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Figure 9: Temporal plots showing RMSE and DSSIM metrics over the whole sequences used to evaluate our results in this paper. We compare
VPT 4 spp, ATR with 1 and 4 spp, per-eye independent denoising using wRLS (EID) and our stereoscopic denoising approach (SR).
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