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ABSTRACT

Imbalanced datasets often bias downstream models towards favoring majority classes, posing a critical challenge
in deep learning, where extensive data is pivotal for optimal performance. Traditional solutions, such as classical
data augmentation, often struggle with nuanced data traits and lack adaptability. The emergence of deep learning
techniques like Auto Encoders (AEs), Generative Adversarial Networks (GANSs), Diffusion Models (DMs), and
Large Language Models (LLMs) opens promising avenues for addressing class imbalance through synthetic
data generation. This paper presents a comprehensive survey of generative Al techniques for mitigating class
imbalance in tabular datasets. These methods have the potential to improve the performance and efficiency
of data-driven models across multiple domains. We evaluate their effectiveness in applications like handball
play classification, income level prediction, and used car evaluation. We not only assess their efficacy in these
real-world applications but also introduce computational efficiency tests, an often-overlooked aspect in this
field. In addition to the survey, we present ‘GenTab,” a synthetic tabular data generation library to facilitate
the implementation and evaluation of the discussed approaches. GenTab is accessible on GitHub and offers a
user-friendly framework for practitioners to leverage cutting-edge generative models for synthetic tabular dataset

creation or augmentation.

1 INTRODUCTION

The widespread adoption of Machine Learning (ML) and Deep
Learning (DL) techniques across diverse research fields has
underscored the persistent challenges posed by ‘class imbal-
ance’ [1, 2, 3, 4]. Class imbalance refers to a scenario in a
dataset where one or more classes significantly outnumber oth-
ers. Within this context, classes with higher representation are
termed ‘majority classes’, whereas those with less representation
are deemed ‘minority classes’. This imbalance can impact the
performance and accuracy of downstream models, making it a
crucial consideration in dataset preparation and model training.
This issue becomes particularly critical when minority classes,
despite being limited in number, hold significant importance.
This problem is prevalent across various domains, such as finan-
cial data analysis [5], where it can have severe consequences.
Imbalanced datasets can contribute to discriminatory lending
practices or biases when assessing creditworthiness. In the do-
main of indoor invasion sports, such as handball, penalties are
rare but critical game situations that pose substantial challenges
to automated production systems [6]. Examples like these high-
light the need for robust solutions to address class imbalance in
diverse and practical scenarios.

Deep learning techniques, often characterized by their ‘black-
box’ modeling of relationships between input and output vari-
ables, encounter unique challenges when confronted with imbal-
anced data. This complexity is particularly relevant given how
neural networks update their weights, often favoring the major-
ity classes, as discussed in [7]. Despite the numerous proposed

approaches to mitigate this issue, addressing class imbalance
remains an open problem, with many existing solutions yield-
ing unsatisfactory results, as evidenced by [8]. Furthermore,
neural networks may learn random replications of the most
frequent samples, further complicating their training process.
Advancements in deep learning, such as Auto Encoders (AEs)
[9], Generative Adversarial Networks (GANSs) [10], Diffusion
Models (DMs) [1 1], and Large Language Models (LLMs) [12],
have garnered significant interest and present clear opportunities
for synthetic data generation.

Deep learning architectures surpass the limitations of traditional
data augmentation techniques (e.g., data sampling or replica-
tion) by accounting for data space density and capturing com-
plex relationships within the original dataset. As such, they are
considered ‘global scope’ models. In contrast, random oversam-
pling methods such as SMOTE [13] and ADASYN [14] create
new samples using nearest-neighbor interpolation, assuming
that the space between existing samples is also representative
of the minority class, which might be a strong assumption, i.e.,
a new class sample could be located outside of the observed
minority class manifold. While effective in addressing class
imbalance in lower-dimensional problems, their efficacy dimin-
ishes in high-dimensional space, as demonstrated in [15]. These
‘local scope’ models, focused on single observations or close
neighbors, may generate unrealistic and noisy synthetic samples
that lie outside the actual minority class manifold and struggle to
capture nonlinear relationships. Other classical approaches, like
Gaussian Copula [16], rely on predefined statistical assumptions
(e.g., marginal distributions), which often fail to model high-
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dimensional, nonlinear real-world tabular data distributions.

As outlined above, numerous methods exist for synthetic tabular
data generation. This work aims to provide an in-depth survey
of key approaches, with a primary focus on AEs, GANs, DMs,
and LLMs. These generative methods are increasingly essential
for tasks such as data augmentation, class imbalance mitigation,
dataset anonymization, and resampling. To complement this
survey, we introduce an open-source library that lowers entry
barriers by providing access to state-of-the-art techniques, en-
abling researchers to easily apply them to their own datasets.
The library is also designed for extensibility, allowing seamless
integration of new data generation models.

What sets our survey apart from others While existing sur-
veys have explored various architectures for synthetic tabular
data generation, such as probabilistic models [17], AEs [18],
or GANSs [19], our work addresses the gap concerning newer
neural network-based approaches. We provide a comprehensive
and up-to-date coverage of the latest advancements in this area,
focusing particularly on advanced architectures such as DMs
and LLMs, which remain underexplored in previous surveys
[20, 21, 22, 23]. This effort builds on and extends the taxonomy
provided by prior work [20], incorporating additional state-of-
the-art approaches and offering a more detailed classification of
these emerging methods. Unlike surveys that primarily focus on
theoretical discussions, we complement our analysis with exten-
sive testing of the surveyed techniques across diverse datasets.
Furthermore, we introduce a dedicated synthetic tabular data
generation library which was used in our experiments. This
library was designed to make state-of-the-art methods more ac-
cessible and reproducible. By combining theoretical insights
with practical tools, our survey bridges a significant gap in the
current literature, providing researchers with the knowledge and
resources needed to leverage these powerful techniques effec-
tively. In summary, our contributions are threefold:

¢ Survey and taxonomy: We provide an in-depth survey
of the most relevant neural network-based architectures
for synthetic tabular data generation and extend the
taxonomy in [20] to include state-of-the-art approaches
like DMs and LLMs.

¢ Synthetic tabular data generation library: We have
developed an open-source library, ‘GenTab’, designed
to easily generate, tune, and evaluate synthetic data
using advanced methods, making these techniques ac-
cessible to a wide range of users and encouraging re-
producibility.

e Benchmarking: We conduct benchmarking of se-
lected state-of-the-art methods across diverse datasets
to assess performance and applicability, including a
computational efficiency analysis, an important aspect
often overlooked in the existing literature.

2 BACKGROUND

Our study delves into the fundamental concepts, objectives, and
motivations behind synthetic tabular data generation. Synthetic
data refers to artificially created samples that mimic the charac-
teristics of an original dataset using generative models trained
on existing data.

2
Buying Maint Doors Persons LugBoot Safety Class
vhigh  vhigh 2 2 small low unacc
vhigh med 2 4 big med accept
med low 2 4 small high  good
med low 2 more big high  vgood
med low 2 more small low  unacc

Figure 1: Example from one of the chosen datasets, UCI Car
Evaluation [24]. Columns represent car properties and rows
car instances. Buying represents its overall price, Maint its
maintenance price, Doors its door number, Persons its capacity,
Lug Boot the luggage boot size, Safety the estimated safety, and
Class the evaluation level of the car.

2.1 Synthetic Tabular Data Generation

Although the ‘tabular data’ concept is quite common, providing a
brief definition is essential. Tabular data usually comprises rows
and columns. Columns define attributes relevant to a particular
domain, while rows represent individual samples. Throughout
the text, we may interchangeably refer to them as rows, sam-
ples, or observations. For example, in used car evaluation (see
Fig. 1), each row represents a specific car, and the columns
detail car attributes, such as its price, number of doors, capacity,
and condition. It is important to note that multiple rows may
contain identical information in a tabular dataset. Sometimes,
an attribute may be missing from an instance, and a placeholder
or invariant value is often used to indicate the lack of data.

We assume access to N labeled rows from a source dataset, de-
noted as D = {(X;, Yi)}f\i - In this representation, X; signifies
an observation (comprising either numeric or categorical fea-
tures), while Y; represents its corresponding class or label. In
many instances, tabular data exhibits a relationship between Y;
(the dependent variable), and the rest of the columns, X; (the
independent variables). These independent variables explain
changes or variations in the dependent variable. While such a
relationship is optional, our survey focuses primarily on works
where the ultimate goal involves understanding or leveraging
this relationship. This focus aligns with using tabular data in
supervised learning scenarios, where the interaction between
these variable types is critical.

In these cases, the structure and nature of the data are pivotal
in developing effective models that can accurately capture and
utilize these relationships for making informed predictions or
decisions. The ultimate goal in our case study is training a
classification model, f : X — Y, to accurately classify un-
seen data. Our focus is on generating an enhanced synthetic
training set DS = {(XiS ,Y IS )}fi , utilizing synthetic data genera-
tion techniques. This involves employing a generator function
Seen(30) = (X5,Y5), where p represents the generator hyper-
parameters, and (X°,Y5) € D5 a synthetically generated row
(being X3 its features and Y its corresponding class). The
generator produces a synthetic dataset DS of arbitrary length,
crafted to not only mimic the original data but also to enhance
the training process of the classification model. Key issues such
as class imbalance and feature representation are specifically
addressed in DS .



PREPRINT — MITIGATING CLASS IMBALANCE IN TABULAR DATA THROUGH NEURAL NETWORK-BASED SYNTHETIC DATA GENERATION: A

COMPREHENSIVE SURVEY AND LIBRARY

Table 1: Summary of neural network-based synthetic data generators, highlighting their key characteristics and differences.

Classical Neural Network-based
Randomized @  Probabilistic AE @ GANU DM LLM
Nonlinear Pattern Support O (D) [ [ [ ] [ ]
Dimensionality Support O [ D) [ [ [ ] [ ]
Noise Robustness O © [ [ [ ) o
Diversity O O [ D) [ [ [
Computational Efficiency % () [ D) [ D) [ D) O O
Fidelity © O O O { O
Privacy 7 O () [ D) () [ D) O
Oversampling Performance 7 O (D) o (D) [ ) O

O =Low © = Moderate @ = High

Evaluations have a white background when based on theoretical assumptions (Sec. III), gray backgrounds signify they are based on experimental data (Sec. V).

Elements in blue can be clicked to navigate to the relevant part in the paper.

2.2 Case Studies

Our survey analyzes two of the most significant applications of
synthetic tabular data generation: oversampling for mitigating
class imbalance and dataset anonymization for privacy.

Class Imbalance This survey mainly focuses on the challenge
of class imbalance, specifically addressing scenarios where the
dependent variable presents a significant imbalance in its dis-
tribution. In these situations, the distribution of categories or
classes within the dependent variable is uneven, often leading to
a skew in the dataset where one or more classes are underrepre-
sented compared to others. This imbalance has the potential to
negatively affect downstream models, particularly in supervised
learning tasks, where the model may suffer from bias towards
the majority class, failing to recognize or predict instances of the
minority class adequately. One of the most common approaches
for addressing this issue is oversampling [25]. This technique
generates new observations for minority classes achieving a
more balanced distribution. Our survey aims to explore and
highlight neural network-based methodologies, techniques, and
approaches that mitigate class imbalance issues in tabular data.

Privacy Although not the main focus of our survey, synthetic
tabular data generation also offers a compelling solution for
dataset anonymization, addressing the ongoing challenge of bal-
ancing data utility with privacy concerns [26]. This approach
seeks to create synthetic datasets that minimize re-identification
risks by ensuring that individual samples cannot be linked to
actual dataset records. The central goal is to produce an artificial
dataset that eliminates identifiable samples, safeguarding privacy
while keeping the downstream utility of the data intact. This
anonymization process requires generative techniques capable of
accurately modeling the original dataset and ensuring sufficient
distinctiveness in synthetic samples to prevent re-identification.
This is particularly crucial in healthcare, finance, or social sci-
ences, where sensitive data requires analytic integrity without
compromising confidential information [27].

3 NETWORK-BASED SYNTHETIC TABULAR DATA
(GENERATION

In [20], a general taxonomy for synthetic tabular data generation
is presented. Our survey extends this taxonomy by providing ad-
ditional details about the architectures and mechanisms for data
generation, incorporating previously underexplored approaches.
For a comprehensive summary of the surveyed architectures and
their differences compared to classical approaches, see Table 1.
To facilitate navigation and provide details about the reasoning
behind the chosen evaluations, highlighted elements in the table
link to the corresponding sections of the paper where longer
form explanations are provided. We focus specifically on gen-
erative models, categorized under network-based approaches.
These approaches typically generate samples in latent or input
space that yield observations virtually indistinguishable from
those in the original dataset.

Conversely, traditional approaches rely on information from
individual samples, nearby neighbors, or predefined paramet-
ric distributions. These methods can be sensitive to outliers
and noise in minority samples, which may lead to the genera-
tion of synthetic samples that also exhibit these issues and lie
outside the true minority class manifold. The lack of inherent
regularization mechanisms in many traditional methods exac-
erbates this issue, increasing the risk of overfitting. Moreover,
in high-dimensional spaces, nearest-neighbor searches become
less reliable, and linear interpolations less meaningful, limiting
the variability and reliability of generated synthetic samples.
Traditional methods also struggle to accurately represent nonlin-
ear relationships due to their reliance on underlying assumptions
of linearity or simple parametric distributions, which can fail to
capture the non-monotonic dependencies that can exist between
features in real-world datasets, thus limiting the diversity and
quality of generated samples.

These limitations contrast with deep generative models (such
as GANs, VAEs, DMs, and LLMs) which have the capacity,
via neural networks, to learn much more complex, nonlinear
relationships and approximate the true underlying data distribu-
tion more faithfully. As a result, they can generate more diverse
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Table 2: Classification of the selected synthetic data generation methods, categorizing them within their corresponding architecture
types. Each method is detailed in terms of its specific architecture type (used technique or approach), architecture (broader
data augmentation type), level (stage of the ML pipeline in which the generative process is applied), data space (type of data
representation the model applies to), and scope (extent of utilization of the underlying dataset distribution properties). This
classification aligns and extends the categorization practices in [20].

Algorithm Type Architecture Level Data space Scope

SMOTE [13] Linear Randomized External Input Local
ADASYN [14] Linear Randomized External Input Local
GaussianCopula [16] PDF Probabilistic External Latent Global
TVAE [28] AE Network External Latent Global

CTGAN [28] GAN Network External Latent Global
CTAB-GAN [29] GAN Network External Latent Global
CTAB-GAN+ [30] GAN Network External Latent Global
CopulaGAN [16, 28] PDF+GAN Probabilistic+Network External Latent Global
ForestDiffusion [31] DM Network External Latent Global
AutoDiffusion [32] AE+DM Network External Latent Global
GReaT [33] LLM Network External Input+Latent Global

Tabula [34] LLM Network External Input+Latent Global

and realistic synthetic samples consistent with the overall data
distribution, potentially offering better coverage of the minority
class manifold. Given these considerations, our expanded
taxonomy encompasses the most relevant neural network-based
architectures. Table 2 illustrates the chosen tabular data gen-
eration methods and their classification within the expanded
taxonomy.

3.1 Auto Encoders

AEs [35] are specialized neural networks that focus on learning
a latent representation of the input data, which is reproduced in
the output layer. These networks are trained in an unsupervised
manner and typically consist of three elements, the encoder,
the ‘bottleneck’, and the decoder (see Fig. 2). The encoder
maps input vectors into hidden representations in latent space,
compressing the input into a lower-dimensional form. This
latent space is a compact, encoded representation, that captures
its key features and patterns. Following the bottleneck is the
decoder, which regenerates the input data from its latent space
representation, attempting to map the compressed data back
to the original output space. Once the latent representation is
obtained, it can be perturbed or manipulated to generate new data
samples. This capability makes AEs particularly useful for tasks
like dimensionality reduction, feature extraction, denoising, and,
in our case, synthetic tabular data generation.

A key advancement in AEs was the development of the Varia-
tional Auto Encoder (VAE), introduced in [36]. VAEs employ
variational inference for continuous latent space representation
learning, facilitating smooth interpolation between training data
points. The variational aspect in VAEs forces the model to learn
a distribution in latent space, not just point estimates, making
it less susceptible to overfitting individual minority samples.
Sampling from a learned distribution in latent space, VAEs can
generate a wider variety of synthetic samples, covering more of
the minority class manifold and providing increased diversity,

which is crucial for improving downstream classifier perfor-
mance.

The adaptation of VAEs for tabular data generation, and particu-
larly the TVAE [28] model, stands out as one of the key develop-
ments for employing purely AE-based architectures in synthetic
tabular data generation tasks. TVAE adapts the VAE framework
to handle tabular data through specific pre-processing techniques.
This includes representing categorical values as one-hot vectors
and employing ‘mode-specific’ normalization. The normaliza-
tion process uses a Variational Gaussian Mixture (VGM) model,
as detailed in [37], which is particularly effective when dealing
with numerical columns that have complex distributions. In this
representation, each value is encoded in a one-hot vector denot-
ing its mode, along with a number representing the value within
that mode. Furthermore, TVAE, structurally similar to a VAE,
comprises two neural networks that are jointly trained using evi-
dence lower-bound (ELBO) loss [36]. The KL divergence term
in their loss function acts as a regularizer, encouraging the latent
space to be smooth and well-behaved, mitigating overfitting to
the training data (including noisy minority samples), a common
problem in local oversampling methods.

AEs, and particularly VAEs, offer a promising approach for tack-
ling class imbalance. They have shown strong results in similar
areas, such as synthetic data generation for imbalanced learning
[38]. In these applications, they often surpass traditional over-
sampling techniques that simply create copies or slight variations
of existing minority class samples or predefined distributions.
The encoder and decoder networks can learn highly nonlinear
mappings, allowing AEs to capture complex dependencies be-
tween features and generate synthetic data that reflects these
nonlinearities. This capacity to capture complex, nonlinear re-
lationships between features enhances their ability to create
diverse yet representative synthetic data.

For those seeking more comprehensive information on AEs,
their development, applications, and underlying principles, refer



PREPRINT — MITIGATING CLASS IMBALANCE IN TABULAR DATA THROUGH NEURAL NETWORK-BASED SYNTHETIC DATA GENERATION: A

COMPREHENSIVE SURVEY AND LIBRARY

[:] Encoding Network  Decoding Network C]
) )

Lower-Dimensional

Real II ’ Synthetic II
Data _) "9 Data

OO0 - OO0
OO0 - OOJ

OO00 - OOOO

{

Figure 2: Illustration detailing the inner-workings of Auto En-
coders (AEs). It shows two key components in this architecture,
the encoder and the decoder. The encoder (blue) reduces the
dimensionality of the input, compressing it down to a latent
space representation. Following this process, the decoder (teal)
recreates the input from its latent space representation back
to output space, aiming to replicate the original input data as
closely as possible. We can introduce synthetic latent vectors
into the trained decoding network to create new observations
that mimic real data.

to [39]. For a survey more in line with our case study, readers
can peruse [ 18], exploring their use for missing data imputation.

3.2 Generative Adversarial Networks

Since their inception, GANs [40] have enticed significant re-
search interest. GANs engage two neural networks in a contest:
one network functions as a generator and the other as a discrimi-
nator (see Fig. 3). The fundamental concept of GANs lies in their
indirect training approach, primarily through the discriminator,
a network tasked with evaluating the realism of inputs. The gen-
erative network, trained to reconstruct data from a latent space
vector (noise), creates candidate data, while the discriminative
network assesses these candidates against the actual data distri-
bution. The generative network aims to trick the discriminator
into classifying its synthetic output as part of the real data dis-
tribution. This adversarial learning process makes them highly
effective when generating synthetic observations that are repre-
sentative of the underlying data distribution. By incentivizing
the generator to reproduce the intricate patterns present in the
real data distribution, such as nonlinearities, GANs can cre-
ate synthetic data that preserves not only individual column
properties but also complex feature interactions and conditional
dependencies. Moreover, the generator learns to map a low-
dimensional noise vector to points within the high-dimensional
feature space data manifold, bypassing the need to model the
probability density across the entire high-dimensional space,
therefore mitigating the curse of dimensionality. While GANs
are proficient in the synthetic data generation task, they en-
counter several challenges, including vanishing gradients, mode
collapse, and difficulties converging, as outlined in [41].

Historically, GANs have been predominantly utilized in com-
puter vision class imbalance problems [42], but their potential
applications extend beyond image data. Early GAN implemen-
tations, lacking mechanisms for specifying the desired output
classes, were limited in their ability to address class imbalance
problems through the targeted generation of minority class sam-

Real

o

Fake

Real
Data

==> | Discriminator
T
Synthetic |I
D

ata

- -

Generator

2}
€2
=}
o~
e
=}
=}

Figure 3: Diagram showcasing the functioning of Generative
Adversarial Networks (GANSs), highlighting the competition
between the generator (orange) and the discriminator (green).
The generator creates new observations from noise, while the
discriminator, receiving both real and fake data, learns to distin-
guish between them. Over time, the generator aims to produce
higher-quality samples, making it increasingly difficult for the
discriminator to tell whether the data is real or synthetic.

ples. Significant efforts have been directed towards resolving
this issue, notably CGAN [43] and BAGAN [44]. While being
slight modifications of the original GAN architecture, these ar-
chitectures incorporate a key feature: they condition the network
with additional information during training, such as class labels,
allowing for the targeted generation of minority class samples.
Another noteworthy development for our case study is the con-
ditional Wasserstein GAN (WGAN) oversampling method in
[45]. This approach utilizes the CGAN structure, incorporating
the WGAN gradient penalty (WGAN-GP) loss function and an
Auxiliary Classifier (AC) [46] loss to improve minority sample
generation and create not only plausible but truly recognizable
synthetic data points. Furthermore, GWGAN-GP [47] employs
Gaussian distribution labels to disperse synthetic examples, re-
ducing redundancy and increasing diversity compared to local
methods.

A significant contribution to GAN-based methods is CTGAN
[28], a novel adaptation of GANs explicitly tailored for gener-
ating realistic synthetic tabular data. CTGAN introduces a new
conditional generator, which plays a critical role in managing
discrete and imbalanced columns in the data. By condition-
ing the generation process on specific categorical variables, it
ensures the realistic representation of both common and rare cat-
egories while preserving complex data relationships missed by
local methods. The training-by-sampling approach in CTGAN
is designed to effectively sample and model different distribu-
tions present in tabular data. During training, categories are
sampled according to their log-frequency, ensuring rare cate-
gories are equally explored. This prevents the generator from
favoring majority classes and mitigates mode collapse. Copu-
laGAN [16, 28], is a modification of CTGAN that integrates
classical statistical methods with GAN-based approaches. It is a
hybrid that combines the Gaussian Copula [48], a well-known
statistical method for learning the overall distribution of real
data, with the architecture of CTGAN.

CTAB-GAN [29] is another iteration of the CGAN method-
ology, with enhanced capabilities to model varied data types,
which include combinations of continuous and categorical vari-
ables. Several elements are introduced to refine the CGAN
framework. These include information loss and classification
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loss for addressing class imbalance and long tail issues. The
information loss helps ensure that the synthetic data retains key
characteristics of the original dataset (i.e., mean and standard
deviation), while the classification loss aids in maintaining se-
mantic integrity penalizing samples with incorrect combinations
of values. Another novel aspect of CTAB-GAN is its unique
conditional vector design. This conditional vector is specif-
ically engineered to encode diverse data types and variables
with a skewed distribution (a common occurrence in imbalanced
datasets).

CTAB-GAN+ [30], an enhanced version of the CTAB-GAN
architecture, offers several improvements when generating syn-
thetic data for imbalanced datasets. This improved model incor-
porates downstream losses into the conditional GAN framework,
specifically aimed at increasing the performance of synthetic
data in downstream tasks. To address class imbalance problems,
it utilizes two techniques from CTGAN: a conditional genera-
tor and training-by-sampling. In addition, it uses Wasserstein
loss [49] with gradient penalty, a modification designed to im-
prove training convergence and stability, making this model less
susceptible to noise in minority samples. CTAB-GAN+ also
introduces novel encoders that are specifically tailored to han-
dle mixed continuous or categorical variable types, as well as
variables with skewed distributions.

For a more detailed exploration of how GANs can be used to mit-
igate class imbalance problems in tabular data, a comprehensive
review is available in [50].

3.3 Diffusion Models

The field of generative Al has recently witnessed a rise in interest
regarding diffusion models, owing to their performance, which
often matches or surpasses that of state-of-the-art GANs. These
models, a category of probabilistic generative models, introduce
random noise to observations, subsequently learning to revert
this process and regenerate them from that noise (see Fig. 4).
This process allows DMs to generate new synthetic samples and
enables them to progressively build internal structures that accu-
rately model input data distributions. To effectively predict the
noise at each step, the network must implicitly learn the under-
lying structure of the data manifold, including its nonlinearities,
even when partially hidden by noise. This step-by-step denois-
ing process breaks down complexity, allowing DMs to gradually
reconstruct high-dimensional samples that adhere to the learned
data structure. As a result, DMs have been highly successful
in generating high-quality and realistic images. They are also
known for their ability to create diverse outputs with intricate
details, which makes them suitable for our case study. Although,
similarly to GANS, DMs have primarily been applied to address
class imbalance issues in image datasets [51, 52], their success
in these applications in terms of fidelity and diversity, suggests
their potential for mitigating class imbalance issues in tabular
datasets. Diffusion model research is generally based on three
primary formulations: Denoising Diffusion Probabilistic Mod-
els (DDPMs) [53, 11], Score-based Models (SGMs) [54], and
Stochastic Differential Equations (SDEs) [55].

DDPMs, rooted in the principles of non-equilibrium thermody-
namics, employ a dual Markov chain of diffusion stages (forward
and backward). The forward process comprises the diffusion of
data with pre-determined noise (i.e., Gaussian noise), while the

Forward Diffusion Process (fixed)

)

Data
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52 Stroke M

Synthetic II
Data

Figure 4: Illustration of the operation of Diffusion Models
(DMs). The figure depicts their two main processes: the forward
diffusion process, where the real input is gradually corrupted
by adding noise, and the backward diffusion process, where
the model learns to reverse the noise addition to generate new
samples.

&

Reverse Denoising Process (generative)

reverse process employs neural networks to eliminate noise and
recover the original data sequentially. While DDPMs have been
typically applied to continuous data types like audio and images
through Gaussian diffusion, their application can be extended
to other domains through multinomial diffusion, as discussed
in [56]. Multinomial diffusion is specifically designed to han-
dle categorical data, providing a method for applying diffusion
model principles to discrete data types, allowing these models to
be applied to the task at hand, synthetic tabular data generation.

TabDDPM [57] is a prime example of how DDPMs can be uti-
lized to generate synthetic tabular data in imbalanced scenarios.
This model employs a distinct diffusion process for each feature
type: Gaussian diffusion for numerical features and multino-
mial diffusion for categorical features. Multinomial diffusion
operates by gradually adding uniform categorical noise during
the forward process and reversing it through iterative denoising.
Each categorical feature undergoes an independent forward dif-
fusion process, isolating its noise dynamics from more frequent
features, thereby helping to avoid mode collapse. Additionally, it
uses a class-conditional design, which enables explicit modeling
of minority classes by conditioning on class labels.

SGMs utilize a score function to learn the logarithm of the gra-
dient for the Probability Density Function (PDF) inherent in
the actual input data. High-dimensional data and deep neural
network contexts, make directly obtaining this function not fea-
sible. Various approaches have been developed to overcome this
challenge. Score-Matching, as introduced in [58], focuses on
estimating the probability density function score, which tries to
address many of the problems in likelihood-based methods. De-
noising Score Matching, proposed in [54], extends this concept
by training the model to predict the score of the noiseless data
distribution, obtaining a strong prior for the clean signal. Sliced
Score Matching, detailed in [59], further simplifies the score-
matching task by using a one-dimensional data distribution,
reducing complexity and enhancing computational efficiency for
high-dimensional data. For a further look into SGMs, the reader
can peruse [60, 61].

SDE based models share similar objectives with both SGMs
and DDPMs.[55] extends the number of noise scales, finite in
traditional SGMs and DDPMs, to infinity by applying SDEs.
This expansion of noise levels allows for more continuous and
precise modeling, enhancing the effectiveness of generative mod-
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els. During training, instead of directly approximating the score
functions (computationally infeasible), transition probabilities
are estimated. After the training process, samples can be gen-
erated using several methods such as Euler-Maruyama (EM),
Prediction-Correction (PC), or probability flow Ordinary Differ-
ential Equations (ODEs).

Diving specifically into our problem at hand, dataset imbalance,
Score-based Over Sampling (SOS) [62] is the first work intro-
ducing a score-based tabular data oversampling method. This
technique is reminiscent of a style transfer method, as it trans-
forms samples from majority classes by adding controlled noise
through a forward SDE into synthetic minority class samples
(using a reverse SDE to denoise them). This process is guided
by a class-conditioned score function that ensures the generated
samples resemble the minority class distribution. This approach
avoids generating synthetic samples in isolation and instead
leverages existing majority class data to inform minority class
synthesis, improving boundary alignment between classes. Fi-
nally, a class-conditional fine-tuning scheme can be optionally
applied to improve minority class sampling performance.

STaSy [63], employing SGMs for tabular data synthesis, ad-
dresses the challenges of directly applying SDEs to this domain.
The authors highlight the difficulty in learning joint probabili-
ties of columns when using standard SDEs, to overcome this,
they introduce dataset-dependent Multilayer Perceptron (MLP)
residual blocks. Furthermore, they propose a novel training
strategy combining self-paced learning (SPL) with denoising
score matching. SPL dynamically adjusts the training process by
prioritizing easier samples with low training losses initially and
gradually incorporating the rest of the data. This approach helps
mitigate uneven loss distributions often observed in imbalanced
datasets. For sample generation, STaSy leverages probability
flow ODE:s to solve the inverse SDEs. Neural ODEs facilitate
computing the log-probabilities of individual data records, en-
abling fine-tuning of the initially trained model, improving the
diversity of generated minority class examples.

Building on the foundational concepts discussed, AutoDiffusion
[32] presents an innovative solution for handling heterogeneous
features in tabular data, combining the strengths of AEs and
DDPMs or SGMs for data generation. This hybrid model lever-
ages the capability of AEs to effectively deal with heterogeneous
features and the proficiency of DMs in learning distributions
in continuous space. In addition, this approach offers greater
resource efficiency by performing the diffusion process within la-
tent space, drawing parallels to Latent Diffusion Models (LDMs)
[64] and demonstrating their applicability to synthetic tabular
data generation tasks.

ForestDiffusion [31] takes a unique approach by combining
SGMs with conditional flow matching. Unlike other techniques
primarily relying on neural networks, it employs XGBoost [65],
a renowned Gradient Boosting Tree (GBT) method. This ap-
proach duplicates the training dataset to compute the expectation
in the diffusion and flow losses effectively. Instead of performing
label conditioning within a single generative model, ForestDif-
fusion trains a separate XGBoost model for each class, forcing
label-based splitting before deeper tree growth. This strategy en-
hances minority sample generation performance, as each model
specializes in capturing the unique characteristics of a specific
class regardless of the number of samples present in the data.
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Figure 5: Depiction of the synthetic tabular data synthesis pro-
cess using Large Language Models (LLMs). It begins with the
conversion of tabular data into text, which is then permutated
and tokenized as a preparatory step for fine-tuning the LL.Ms.
For generating synthetic data, the models are conditioned with
subsets of this text-based data, and the LLMs are tasked with
generating the remaining features.

Although as mentioned above it is not a purely network-based
approach, it nonetheless falls into the SGM category even if
currently not using a neural network to estimate score functions.

For a comprehensive overview of DMs, readers are encouraged
to consult [66]. Those specifically interested in the application
of DMs to structured data can find an in-depth analysis in [67].

3.4 Large Language Models

LLMs are specific types of Natural Language Processing (NLP)
models that utilize Transformers [68] and are characterized by
their massive scale, often having billions of parameters. These
models are trained on huge text datasets, achieving remark-
able capabilities in language understanding and generation [69].
Prominent examples of LLMs include the GPT [70] family of
models. Models like these define significant advancements in
NLP, offering an ample range of applications due to their sophis-
ticated understanding of language patterns and ability to solve
complex tasks (via text generation). Their advanced text genera-
tion abilities open up potential avenues for novel applications,
including the possibility of their use in this area [71].

LLMs follow similar architectural designs and pre-training ob-
jectives as smaller language models, but they significantly ex-
pand in three key areas: model size, data size, and computational
power. A key advantage resulting from their massive scale is
enhanced pattern recognition, enabling them to handle noisy or
incomplete data. The vast knowledge encoded within LLMs
presents a unique opportunity to generate highly diverse minor-
ity class samples that extend beyond the observed minority class
manifold. This capability is particularly valuable in data-scarce
scenarios, where LLMs can leverage prior knowledge to cre-
ate synthetic samples that capture a wider range of potential
variations within the minority class.

Scaling has been a critical factor in their development, as exten-
sive research indicates that it can substantially enhance model
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abilities [72]. The significant scaling up of LLMs has led to
what is known in the literature as ‘emergent abilities’, a concept
explored in [73]. Unique to LLMs, these abilities do not appear
in smaller models and arise only at large scales. These emer-
gent capabilities encompass in-context learning, meaning LLMs
can understand and adapt to new information or tasks based
on the given context; instruction following, demonstrating their
capacity to comprehend and enforce complex instructions; and
step-by-step reasoning, which allows them to process logically
and reason through problems or queries methodically.

The application of LLMs to the problem of tabular data synthesis
has been made possible through several developments primarily
revolving around textual encoding (see Fig. 5). This process
involves transforming tabular data into a text-based format [33],
a critical step that enables fine-tuning LLMs for our purpose
since they are inherently designed for processing and generat-
ing text. A significant technique facilitating this application is
training models with textual encodings incorporating random
feature order permutations. This approach allows the models to
be arbitrarily conditioned. LLMs can model the data distribution
conditioned on any selected group of features and then generate
the remaining ones. This flexibility allows LLMs to understand
and capture the complex nonlinear relationships and patterns
present in tabular data.

GReaT [33], utilizes an auto-regressive LLM based on a
transformer-decoder network architecture for sampling synthetic
tabular data. The auto-regressive nature of GReaT ensures that
synthetic data respects complex feature relationships, even when
generating samples for minority classes. This is critical for
maintaining the integrity of tabular datasets, where feature de-
pendencies often play a significant role in downstream tasks.
This approach involves converting tabular datasets into textual
representations to leverage the capabilities of pre-trained self-
attention-based LL.Ms. The conversion process is designed to
tackle three key challenges. Firstly, it addresses the issue of
lossy pre-processing, ensuring that crucial information from the
tabular data is retained in the textual format (e.g., no artificial
ordering is introduced in categorical variable conversion). Sec-
ondly, it focuses on maintaining coherent semantics, leveraging
context knowledge inherent in LLMs to generate consistent data.
Finally, it allows for arbitrary conditioning, meaning the model
can generate data conditioned on any specific combination of
features, which is particularly important for minority sample
generation.

Tabula [34], builds upon the GReaT architecture. It addresses
certain limitations inherent in using NLP models for this pur-
pose, particularly long training and inference times. Tabula
proposes a new foundational model specifically trained for tabu-
lar data synthesis. Leveraging a model that is already attuned
to the particularities of tabular data potentially reduces the time
and resources required for training and inference. Another key
innovation in Tabula is a token sequence compression scheme
designed to improve training times while preserving synthetic
data quality, which is especially important for high-dimensional
datasets. This scheme enhances the capture of interdependen-
cies between tokens, which can benefit synthetic minority class
sample generation. Additionally, Tabula introduces a new to-
ken padding method, which enhances the alignment of token
sequences across the complete training batch, further optimizing
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Figure 6: Workflow of the GenTab library. Real data is first
input and pre-processed through the Dataset module, configured
via a Config file. Next, a Generator is trained to produce syn-
thetic data, which is then evaluated by the Evaluator module to
compute performance metrics. These metrics guide the Tuner
module in optimizing the generator’s parameters to improve the
quality of the synthetic data.

the training process.

In contrast to previously discussed methods requiring fine-tuning
of LLMs, often constrained by computational costs to older GPT
models, alternative methodologies leverage pre-trained LLMs
directly for tabular data generation. Notably, Curated LLM
(CLLM) [74] harnesses the inherent knowledge of GPT-4 [75]
without fine-tuning, offering a framework for tabular data gen-
eration particularly valuable in data-scarce scenarios like ours.
CLLM employs a curated selection process, utilizing confidence
and aleatoric uncertainty metrics derived from a supervised
model trained on the available data to filter undesirable synthetic
samples, thereby prioritizing high-quality data for downstream
model training. To generate new data samples, the frozen LLM
is provided with prompts containing background (text descrip-
tion of the dataset and task), examples (features and labels in
text format), and instructions (the LLM is instructed to lever-
age the contextual information and provide generated samples
respecting data relationships). This approach is particularly
valuable in low-data regimes, where it can extrapolate to unseen
regions of the data manifold based on contextual understanding
of the features, effectively utilizing prior knowledge embedded
in the pre-trained LLM. This enhanced coverage of the minority
class manifold should improve diversity when generating new
minority samples and enhance downstream model performance.

For those interested in a more detailed and in-depth exploration
of LLMs, a comprehensive resource is available in [76]. A more
specific survey centered on LLMs applied to tabular data is [77].

4  GeENTAB: OUR SYNTHETIC TABULAR DATA
GENERATION FRAMEWORK

To facilitate the use and reproducibility of synthetic tabular
data generation methods, we have developed GenTab, an open-
source library designed to simplify the process of generating
synthetic data. GenTab provides a comprehensive set of tools
for generating, tuning, and evaluating data using various state-
of-the-art techniques. It was used in our own experimentation to
benchmark and compare the methods discussed in this survey,
ensuring that our results are reproducible. In this section, we
provide an overview of GenTab’s architecture, describing how
it integrates different data generation models, its user interface,
and the key functionalities it offers.
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from
from
from
from

gentab.generators import AutoDiffusion
gentab.evaluators import LightGBM
gentab.tuners import AutoDiffusionTuner
gentab.data import Config, Dataset

config = Config("configs/adult.json")

dataset = Dataset (config)
dataset.merge_classes ({

"<=b0K": ["<=50K."], ">50K": [">50K."]
b

dataset.reduce_mem ()
trials = 10
generator = AutoDiffusion(dataset)
evaluator = LightGBM(generator)

tuner = AutoDiffusionTuner (evaluator,

tuner.tune ()
tuner.save_to_disk ()

trials)

List. 1: Sample code to implement the GenTab workflow. In the
code we parse a Config, create a Dataset and do some operations
on it, create a Generator, create an Evaluator, create a Tuner,
and run hyperparameter tuning for the desired generator finally
storing the best dataset and model parameters that it has obtained
after ten tries.

4.1 Overview

The library is structured around a well defined workflow to facil-
itate an intuitive and effective synthetic data generation process
(see Fig. 6 and List. 1). It starts with a Config file, an element
that holds information about the dataset, generation models, and
downstream task, among other relevant parameters. Following
the configuration setup, the Dataset module takes over. It uses
the details from the configuration file to load and pre-process
the data. This step is essential for converting the data to a format
suitable for the different generative models. Once the data is
ready, the Generator trains the chosen generative model with the
pre-processed data and subsequently generates new synthetic
samples. Once the data has been generated, the Evaluator as-
sesses its quality. This module ensures the generated data meets
predefined quality standards and is useful for its intended ap-
plications. The library also includes a Tuner, which employs
hyperparameter tuning to optimize the performance of a specific
generator method for a certain dataset.

4.2 Config

The configuration module utilizes JSON (JavaScript Object
Notation) [78] to store information related to the library and
datasets. The configuration file encompasses all the parameters
required to tailor the synthetic data generation process to specific
datasets and tasks. It includes the name and path to the dataset
train and test splits. If desired, the user can specify to download
common datasets present in either the Imbalanced Learn library
[79] or the UCI Machine Learning Repository [80]. In addition,
it stores other common dataset properties like categorical, binary,
or integer column names. The user also needs to input the type
of task (multi-class or binary classification) and the target label.
In addition, some generative models require the user to input
extra information related to column data distributions or other
model-specific settings.

4.3 Dataset

This module is responsible for handling the dataset and load-
ing it into memory, based on the configuration settings. After
loading, it pre-processes the dataset to make it suitable for pro-
cessing by the generators. Its functionalities cover a range of
operations that are crucial for efficient data handling and prepa-
ration. These operations include writing the dataset back into
a suitable format if the user desires to save it to disk, creating
data frames that organize the data in a structured manner for the
different generators, and reducing memory consumption, which
is particularly important for handling large datasets. Addition-
ally, this module also can perform random under-sampling of
the dataset. This can be useful in scenarios where the dataset
is imbalanced, with some classes significantly outnumbering
others. By under-sampling, the module can create a more bal-
anced dataset according to user preference. Our dataset module
also includes tools for assessing the quality of synthetic datasets,
focusing on fidelity and privacy.

Fidelity Regarding marginal fidelity, we use the Jensen Shan-
non divergence (JSD) [81], to help assess differences within
categorical feature probability distributions. This metric is sym-
metrical and its interval is [0, 1], which makes it well suited
for comparisons. In a similar fashion, we use the Wasserstein
distance (WD) [82] to estimate how well the distributions of
continuous features are replicated, as it offers better numerical
stability over JSD for this data type, as noted in [29]. The in-
terval for WD is [0, co], making it more difficult to compare
across datasets. In terms of joint fidelity, we assess feature re-
lationships and how well they are preserved in the synthetic
data versus the real data using several correlation metrics. The
Pearson Correlation Coefficient (PCC) [83] is utilized for pairs
of continuous features, ranging in the interval [—1, 1] and mea-
suring the strength and direction of the relationship between
those features. Next, the Theil’s U (TU) Coefficient [84] is used
to assess information dependencies between pairs of categorical
features. Ranging in the interval [0, 1], it quantifies the amount
of information one feature reveals about the other. Additionally,
the Correlation Ratio (CR) is utilized for measuring the disper-
sion of categorical and continuous feature pairs across the whole
population. Its output value pertains to the [0, 1] interval, zero
meaning a category cannot be inferred from a continuous feature
and one meaning the category can be obtained with total confi-
dence. Finally, to derive a single comprehensive measurement,
we calculate the £2-norms of all computed correlation measures
within each dataset.

Privacy We utilize Distance to Closest Record (DCR) [29],
specifically computing the minimum £2-norm from the synthetic
samples to the real records, and averaging these distances across
all synthetic data to yield the Mean-DCR (MDCR). Since its
result belongs to the [0, co] interval, this metric is difficult to
compare across datasets. A high MDCR indicates greater pri-
vacy, while a low MDCR raises privacy concerns. However,
random noise can produce artificially high DCR values, so high
DCR alone does not guarantee privacy. It is crucial to consider
fidelity and utility metrics alongside DCR, as noted in [32]. We
also include the Nearest Neighbor Distance Ratio (NNDR) [85],
which compares distances between consecutive nearest neigh-
bors of synthetic and real samples. This metric produces a ratio
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in the [0, 1] interval. Higher values indicate better privacy, as
they suggest less proximity to sparse outliers in the original
dataset. In contrast, an NNDR near zero indicates synthetic data
points close to original points in sparse regions, while NNDR
values approaching one suggest synthetic samples are located
within dense regions of the original data. Additionally, we pro-
vide the Hitting Rate (HR) [86], a membership inference metric
that identifies close matches (within a chosen threshold, 3 % in
our case) between synthetic and real data. This metric ranges
within the [0, 1] interval. Lower values are preferable, as they
indicate a lower ratio of closely replicated real samples in the
synthetic data. Lastly, Epsilon Identifiability Risk (EIR) [87]
measures the proportion of real data points that have a generated
sample closer than the next-nearest real data point. Distances are
weighted by the inverse of each column’s entropy to emphasize
rare data points. This metric also produces values in the [0, 1]
interval, with lower values meaning better privacy.

4.4 Generator

The Generator module is the foundation for all the generative
models implemented within the system. This module is tasked
with essential functions like pre-processing (if needed), train-
ing, and sampling synthetic data. Its design is user-friendly,
facilitating the integration of new models with ease. To incor-
porate a new generative model into the library, users simply
need to create a child class derived from the Generator base
class. Within this child class, they are required to implement
three key functions: pre-process for any model-specific data
pre-processing, train for training the generative model using the
pre-processed data, and sample for generating new synthetic
data based on the trained model. Reference implementations
for the generative models presented in Table 2 are organized
within this module. Each model implementation resides in its
own source file and follows the implementation guidelines out-
lined above. This structured approach not only enhances the
usability of the library but also provides a framework to explore,
implement, and compare different generative models.

4.5 Evaluator

The evaluation module is a critical component that offers a range
of evaluators for testing the quality of synthetic datasets for
the chosen downstream task. The evaluators interact with the
tuning module to provide key metrics on dataset performance
in ML tasks. These metrics are essential for the tuning mod-
ule to tailor the data generation model to each specific dataset,
ensuring it accurately replicates its underlying characteristics.
This module also allows for the integration of custom evalua-
tors, enhancing its versatility. Users can leverage the Evaluator
base class and create a child class that implements the necessary
evaluation functions: pre-process for any evaluator-specific data
pre-processing, fit for training the evaluator model, predict for
making predictions with the trained model, and post-process for
any needed post-processing of the evaluator results.

The library currently includes implementations of several state-
of-the-art evaluators. We selected LightGBM [88], a gradient
boosting library that has tree based learning algorithms at its
core. Additionally, we included XGBoost [65], which, although
more computationally expensive, can yield better results. Cat-
Boost [89], another gradient boosting framework, was chosen
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for implementing a different approach for processing categorical
features, a permutation driven algorithm. To further diversify
our evaluation methods, we incorporated a classical technique, a
linear Support Vector Machine (SVM) [90]. Finally, we imple-
mented a Multilayer Perceptron (MLP) [91] specially tailored
for tabular data classification tasks. This architecture yielded the
fastest and simplest model with competitive performance among
neural network-based evaluation methods for the problem at
hand.

ML Utility The Evaluator module automatically computes
standard metrics to evaluate the quality of the generated dataset.
These metrics include the Matthews Correlation Coeficient
(MCQC) [92], which measures classification quality accounting
for true and false positives, with values ranging from -1 (perfect
inverse prediction) to 1 (perfect prediction), and 0 meaning a
random prediction. Additionally, it computes accuracy (overall
correctness of predictions), precision (exactness of predictions
for a specific class), recall (percentage of total occurrences of a
class that the model can accurately detect), and the F-Score (har-
monic mean of precision and recall). To address class imbalance,
the module provides simple (macro) and weighted averages for
suitable metrics. This ensures an accurate evaluation of the syn-
thetic data, particularly in our task at hand, where some classes
are underrepresented. All of these metrics range in the interval
[0%, 100%].

4.6 Tuner

Since hyperparameter optimization is a key step in any neural
network approach, we provide the Tuner module, which allows
the user to perform hyperparameter tuning for any Generator in
the library. For this task we have chosen Optuna [93], a hyper-
parameter tuning library that employs advanced methods in its
parameter sampling and pruning mechanisms. Optuna uses tech-
niques like the Tree-structured Parzen Estimator (TPE) [94] for
sampling, which creates a probabilistic model based on past tri-
als to suggest new promising combinations. It also implements
an alternative, the Covariance Matrix Adaptation Evolution Strat-
egy (CMA-ES) [95], a robust black-box optimization method.
For pruning, it uses strategies like the Asynchronous Successive
Halving Algorithm (ASHA), an extension of [96] to stop less
promising trials early, saving resources and improving efficiency
in finding optimal solutions.

We provide several default hyperparameter combinations to sim-
plify the tuning process, but users can also customize them
as needed. These default settings are based on combinations
provided by the original authors and have demonstrated strong
performance in our testing. As with the other modules involved
in the data generation process, we provide reference implemen-
tations and facilitate the tuning of new generative models. Users
just need to create a new child class of the Tuner base class
that implements the objective function, which instantiates a new
Generator and evaluates it using the chosen Evaluator.

5 ResuLrs

This section presents the experimental results obtained from eval-
uating the synthetic data generators implemented in our library.
As commented, these generators were selected as representative
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Table 3: Dataset characteristics, including imbalance ratio, train-
ing and testing splits, and the number of continuous and categor-
ical features.

Imbalance Train/Test

Dataset Ratio Split Cont. Cat.

Car Evaluation [24] 18.62 1.12K / 0.61K 0 6
PlayNet [97] 3.17 73.60K / 301.02K 66 0

Adult [98] 3.18 39.07K / 9.77K 6 8

Ecoli [99] 8.57 0.22K / 0.12K 0 7

Sick Euthyroid [100] 9.78 2.06K / 1.11K 0 42
Calif. Housing [101] 5.49 16.51K / 4.13K 8 0
Mushroom [102] 2.69 4.74K / 1.62K 0 22
0il [99] 21.48 0.61K / 0.33K 0 49

examples based on the methods discussed in Section 3 of this
survey. The evaluation encompasses four dimensions: computa-
tional efficiency, fidelity, privacy, and ML utility. Computational
efficiency provides insight into the resource requirements of
each method, while fidelity and ML utility assess the suitability
of the synthetic data as a substitute for the real dataset in practi-
cal applications. Privacy, on the other hand, measures the risk
of sensitive information being exposed if the synthetic data is
shared or leaked. The evaluation aims to identify the strengths,
weaknesses, and computational trade-offs of the different meth-
ods, with particular emphasis on their effectiveness in addressing
class imbalance.

We performed all tests on an AMD EPYC 7763 with 256 GB
of RAM, a 2TB SSD, a single NVIDIA A100 80GB GPU, and
the Ubuntu Linux 18.04 x64 operating system. To deal with the
inherent randomness in the data generation process, we use fixed
seeds for both generator and evaluator models for reproducibility
purposes. Additionally, we generate multiple synthetic datasets
(the same number for each generative model) and select the
best-performing one based on the chosen evaluation metrics.

5.1 Datasets

The chosen datasets for our study cover a wide range of charac-
teristics, such as class distribution, feature types, and dataset size,
to effectively test synthetic data generation methods. Together,
these datasets offer a comprehensive basis for evaluating the
performance and versatility of synthetic tabular data generation
methods.

Car Evaluation We utilized a used car evaluation dataset from
[24]. This dataset is comprised of entirely categorical features.
To specifically test highly imbalanced scenarios, we have used
the version found in [99], which has been binarized. This partic-
ular version of the dataset has been pre-processed to represent a
binary classification problem with a markedly imbalanced class
distribution. The target task in this dataset is predicting the sec-
ond hand car evaluation quality based on car attributes like price,
tech or comfort. It represents scenarios where decisions are
made based on qualitative assessments rather than quantitative
measurements.

PlayNet We also included a handball play classification
dataset, detailed in [97], due to its high dimensionality (66 fea-
tures) and predominantly numeric features. This large dataset,
resulting from high-frequency sampling during the handball
matches, comprises over one million rows. In our study, we
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addressed the challenge of handling a large dataset by selecting
a subset of approximately ~74K randomly chosen samples. This
approach was necessary due to time and performance constraints,
but we ensured that the subset maintained a similar imbalance ra-
tio and achieved competitive performance on the full test dataset.
It includes player positions and velocities obtained in two dis-
tinct handball arenas and across several different games. These
features hold geometric and physical significance, enabling a
deeper visual analysis of the generated synthetic datasets. The
target task for this dataset is to classify the type of game situ-
ation [6] in progress at specific game times using player and
ball dynamics. This dataset offers a complex scenario typical in
sports analytics and automatic production.

Adult We selected the UCI Adult dataset, as referenced in
[98], which provides a mix of categorical, binary, and numer-
ical features with intermediate dimensionality. This dataset is
commonly used in machine learning research and presents a
balanced blend of feature types. The dataset comprises approxi-
mately 50K records, each containing 14 features. The target task
is predicting whether income is higher than $50K. This dataset
offers a scenario typical in financial and social science contexts.

Ecoli The biology dataset [103], containing protein localiza-
tion site data, and more specifically, its binarized version [99],
was also included in our analysis. The target task is predicting
the cellular localization sites of proteins. This dataset exhibits
significant class imbalance and presents the fewest samples
among our chosen datasets, allowing us to assess how methods
perform with very scarce data.

Sick Euthyroid This medical dataset [100] focuses on thyroid
disease classification. It includes patient attributes to predict the
presence of hypothyroidism, a task complicated by significant
class imbalance typical in medical domains. This dataset allows
us to evaluate how effectively these data generation techniques
mitigate imbalances in the healthcare domain.

California Housing This housing dataset [101], derived from
the 1990 California census data, incorporates one sample per
census block. A block is the smallest unit the U.S. Census Bu-
reau employs to publish sample data. The target variable is the
median house value for California, which is noted in hundreds of
thousands of dollars. Median house value for California districts,
was quantized into distinct price groups, creating a classifica-
tion problem. The spatial structure of this dataset, containing
latitude and longitude coordinates for each sample, provides an
ideal opportunity to assess the ability of each model to preserve
geographic relationships.

Mushroom [102] describes 23 gilled mushroom species
(Agaricus and Lepiota family) and classifies them as edible
or poisonous. Categorical features represent distinct mushroom
characteristics used to predict edibility. The target variable is
mushroom edibility. This dataset represents another biological
dataset, but in this case comprised of descriptive categorical
features. It also provides a intermediate amount of features and
samples, and a low imbalance ratio.

Qil This environmental dataset, [99], our most imbalanced,
originates from satellite images categorized as containing oil
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Table 4: Timing for the data fitting (hours) and sampling pro-
cesses (seconds), with default and tuned model parameters for
the Adult dataset. We can see that AEs are the fastest training
and sampling network-based methods, while DMs are the slow-
est in training and LL.Ms in sampling. Bold highlights fastest
network-based methods and underlined highlights the slowest.

Baseline Tuned
Model Fit Sample  Fit  Sample
(h) (s (h) (s

SMOTE [13] - 46.18 - 83.36
ADASYN [14] - 0.31 - 3.56
TVAE [28] 0.03 1.50 0.11 6.13

CTGAN [28] 0.04 259 042 2.63
GaussianCopula [16] - 0.84 - 0.86
CopulaGAN [28] 0.03 372 011 3.95
CTAB-GAN [29] 0.18 6.10  0.66 6.20
CTAB-GAN+ [30] 0.21 7.05  0.66 7.05
AutoDiffusion [32] 0.83 1.71 17.60 3.06
ForestDiffusion [31] 13.14 11453 3.84 12.17
GReaT [33] 0.74  631.25 1.62  773.98

Tabula [34] 0.63 584.89 094 27493

spills or not. Image sections were processed to extract descrip-
tive feature vectors. The task is to classify these patches as an
oil spill or non-spill, reflecting the real-world challenge of de-
tecting environmentally damaging oil spills in the environmental
domain.

For a more detailed description of the datasets, like imbalance
ratios, train-test splits, or number and type of features, please
refer to Table 3. We approximately use 5 % of the training splits
for model validation.

5.2 Computational Efficiency

Identifying the lack of emphasis on computational requirements
within the existing literature, we evaluate both training (fit) and
generation (sample) execution times across the 12 generators
implemented in our library. Our tests measure training and gen-
eration time using both default and tuned hyperparameters, as
parameter choice significantly impacts the computational cost
of each method. This approach allows us to see the difference
between default and optimal generators for a certain evaluator
in terms of execution times. We chose the Adult dataset to per-
form this test due to time and computational constraints, and its
balanced representation of factors (categorical and numerical
features). We concentrated our efforts on dataset balancing per-
formance since it is the focus of our survey. Table 4 displays the
execution times when the generators were tasked with creating
19K new samples for balancing the minority class.

The methods that performed best were TVAE and simpler GAN
approaches. AEs offer lower training costs as they lack compu-
tationally expensive transformers or diffusion processes. Copu-
laGAN did well due to internally using GaussianCopula, which,
depending on the selected statistical estimator, can be more
computationally efficient. While default parameters in these
methods generally strike a balance between model fidelity and
training cost, ForestDiffusion stands as an exception. Its default
configuration proved too computationally expensive for timely
execution. The baseline ForestDiffusion results presented in

12

Table 5: Evaluation of synthetic dataset fidelity using a combi-
nation of statistical measures. We provide the average rank for
Jensen Shannon divergences (JSD) and Wasserstein distances
(WD) assessing the marginal fidelity of categorical and con-
tinuous features. Additionally, we show £2-norms for Pearson
Correlation Coefficients (PCC), Theil’s U (TU), and Correlation
Ratios (CR) to evaluate the preservation of feature relationships
within the datasets. Lower is better. Best results are highlighted
in bold, second best are underlined.

Model Marginal Joint
JSD WD PCC TU CR
SMOTE [13] 4.25 533 042 267 0.04
ADASYN [14]  5.50 200 048 299 0.12
TVAE [28] 3.75 9.00 1.97 5.63 0.08
CTGAN [28]  6.00 5.00 250 291 0.17
GaussianCopula [16] 5.25 8.33 1.15 299 0.18
CopulaGAN [28] 1025 5.00 249 288 0.16
CTAB-GAN [29]  7.50 533 220 247 0.09
CTAB-GAN+ [30]  6.75 7.67 238 121 0.05
AutoDiffusion [32]  6.75 8.67 285 273 0.04
ForestDiffusion [31]  10.50 2.00 045 150 0.17
GReaT [33] 450 1033 153 225 0.04
Tabula [34]  7.00 9.33 1.64 0.25 0.06

Table 4 were obtained using a parameter configuration adjusted
to prioritize computational efficiency.

DM s such as ForestDiffusion, contingent on parameter selection,
can present training challenges on a single machine, not only
in terms of time, but also disk space when training in parallel.
Depending on the selected hyperparameters it can be the slow-
est method by a wide margin, sometimes even taking weeks
to train in our test machine. AutoDiffusion offers acceptable
training and sampling times. However, we have seen ML utility
improvements when making its architecture deeper, which leads
to longer training times, the reason why when tuned, it became
slower than ForestDiffusion. Conversely, in this test, ForestD-
iffusion performed better when reducing the amount of dataset
replication, estimators, and tree depth, leading to faster training
times and better performance. LLMs, specifically GReaT and
Tabula, exhibit slow sampling due to model size, increasing
generation times for highly unbalanced datasets.

As anticipated, certain statistical and local methods demonstrate
greater computational efficiency than network-based approaches
due to having less underlying complexity. Thus, users with
hardware or time constraints may initially favor these models.
While in some instances they may yield sub-optimal results, they
offer rapid training and evaluation.

5.3 Fidelity

Our evaluation includes both marginal distribution metrics (JSD
and WD) and joint distribution metrics (PCC, TU, and CR). To
facilitate comparisons across diverse datasets, we report the aver-
age ranking of each method over all tested datasets for marginal
metrics, since distances across datasets have a high amount of
variance and thus can corrupt results across datasets. For joint
distribution metrics, since correlations share the same output
ranges, we directly average the results rather than the rank. All
models were trained using the corresponding training split for
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Figure 7: Comparison of real and synthetic samples for the California Housing dataset. House value class is indicated by point
color and size, while joint histograms of latitude and longitude illustrate the variable’s spatial distribution. The California state
boundary is demarcated by the black outline. This dataset reveals limitations in most methods except Forest Diffusion, with TVAE
and AutoDiffusion also producing reasonable, though less accurate results. LLMs showed middle ground performance, while

GAN:Ss struggled to reproduce the dataset distributions.

each real dataset. We present metrics and visualizations for the
fully synthetic data generated by the different methods. Table 5
shows how the tested generative models performed across the
selected datasets and metrics.

ForestDiffusion excels in numerical feature modeling, achieving
high WD and PCC scores, significantly outperforming other
network-based methods, reflecting the strength of DMs when
modeling continuous data. TVAE performed exceptionally well
when preserving categorical variable distributions, obtaining
the best JSD score. When it comes to categorical feature re-
lationships, Tabula and ForestDiffusion performed best. We
attribute the success of Tabula to the NLP abilities of LLMs,
obtaining the best TU score. Its leading performance in the TU
metric demonstrates its effectiveness when maintaining categor-
ical variable relationships. Lastly, GReaT and AutoDiffusion
exhibit strong performance when modeling mixed categorical-
continuous correlations with the highest CRs, outperforming
other generative models and showcasing their ability to capture
complex feature dependencies. Nearest neighbor-based meth-
ods performed above average in quantitative metrics, but this

performance is achieved at the expense of privacy (see Table 6)
and data distribution distortion.

Additionally, to complement the quantitative analysis presented
in Table 5, we performed a qualitative study on two datasets
that allow better visual interpretation of the generated synthetic
data. Thus, Fig. 7 presents a scatterplot visualizing the spa-
tial distribution of median house value classes for the synthetic
datasets in the California Housing dataset. Geographic informa-
tion proves challenging for most generative models, particularly
GANS, which tend to produce grid-like patterns with numerous
invalid points extending beyond state boundaries or the sea. Ide-
ally, generated synthetic data should not only exhibit realistic
distributions for house values, latitude, and longitude indepen-
dently but also preserve the spatial correlations between these
variables. For instance, synthetic data points should realistically
reflect the distribution of house values across different geograph-
ical locations within California. Methods that fail to capture
these spatial relationships may generate implausible data points,
such as houses located in the ocean or outside of California
altogether. While these models correctly identified individual
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Figure 8: Player position density histograms and heatmaps for the synthetic data versus the original data in the PlayNet dataset.
Darker colors in the heatmap represent a higher density of player positions within that specific area of the court, signifying an
increased likelihood of finding players in those regions throughout a game situation. We can clearly see which methods preserve
player behaviour patters (ForestDiffusion, CTAB-GAN+, and to some extent Tabula and GReaT), and which do not (TVAE,
CTGAN, GaussianCopula, AutoDiffusion). These patterns are specially noticeable in the timeout and penalty game situations.

variable distributions in some cases, they did not capture global
relationships accurately, leading to incorrect final results. LLMs
also generate plausible individual coordinate histograms, but
their spatial distributions and densities are inaccurate, albeit
with fewer out-of-bounds points than GANs. TVAE and AutoD-
iffusion show improved performance, reasonably reproducing
sample distribution and density, but still generating some ge-
ographically nonsensical points (e.g., located in the sea). In
contrast, ForestDiffusion excels, uniquely capturing the under-
lying geographic relationships between latitude, longitude, and
median house value, with accurate variable distributions, class
densities, and minimal out-of-bounds points. While randomized
and probabilistic methods exhibited strong performance in some
quantitative metrics, visual assessments reveal distortions in
data distributions, highlighting the risk of reaching misleading
conclusions when relying solely on numerical evaluations.

Lastly, in Fig. 8, we present player position density histograms
and heatmaps, generated using kernel density estimation (KDE)

[104], for all game situations (timeout, transition, attack, and
penalty) in both real and synthetic PlayNet datasets, illustrat-
ing player spatial distributions across game states. Most meth-
ods struggled to capture player positioning during transitions.
CTAB-GAN and CTAB-GAN+ achieved better results, while
others showed deviations from the real data distribution, depict-
ing players either scattered across the court with no apparent
governing patterns or concentrated in a few key areas, with
only ForestDiffusion accurately modeling positioning density
in this game situation. Similarly, ForestDiffusion uniquely cap-
tures player positioning during penalties, with all other methods
except LLMs failing to provide correct player densities. For
timeouts, TVAE, ForestDiffusion, GReaT, and Tabula effectively
replicate player density patterns. In attack situations, Forest-
Diffusion and the CTAB-GAN variants reasonably reproduce
underlying positioning patterns. Randomized and probabilis-
tic methods exhibit similar problems to the previous test case,
distorting player densities and movement patterns across game
situations. Single samples for each method and game situation
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Table 6: Evaluation of privacy properties of synthetic data gen-
eration methods across all tested datasets. We include Mean
Distance to Closest Record (MDCR) rankings and average Near-
est Neighbor Distance Ratio (NNDR). Higher is better. Addi-
tionally, we provide average Hit Rate (HR) and average Epsilon
Identifiability Risk (EIR). Lower is better. Best results are high-
lighted in bold, second best are underlined.

Model MDCR NNDR HR EIR

Rank
SMOTE [13] 3.83 0.66 0.14 0.38
ADASYN [14] 3.83 0.52 0.19 045
TVAE [28] 4.00 0.79 0.12 0.18
CTGAN [28] 7.50 0.82 0.09 0.15
GaussianCopula [16] 8.17 0.81 0.11  0.12
CopulaGAN [28] 8.83 0.81 0.09 0.15
CTAB-GAN [29] 8.33 0.78 0.11 0.21
CTAB-GAN+ [30] 7.67 0.79 0.11 0.24
AutoDiffusion [32] 8.50 0.76 0.16 0.29
ForestDiffusion [31] 6.83 0.80 0.19 0.28
GReaT [33] 5.67 0.66 0.20 0.32
Tabula [34] 4.83 0.35 046 045

are provided in the Appendix.

Cross-correlation distance heatmaps to better ascertain visually
how the different methods stack up in terms of fidelity for each
individual dataset are given in the Appendix.

5.4  Privacy

To assess privacy, we first average MDCR ranks across all
datasets. Focusing on ranks mitigates dataset-specific variability,
enabling a robust comparison of the privacy preservation capa-
bilities of the selected methods. We also provide average NNDR
values, a metric that offers information about distance between
synthetic samples and their two closest real samples, comple-
menting MDCR. Additionally, we use the average HR metric
to detect sample replication. Finally, average EIR estimates the
proportion of original samples with a synthetic neighbor closer
than the nearest real neighbor. All models were trained on the
respective training split for each real dataset. Subsequently, re-
sults were generated using the fully synthetic data produced by
these trained models. Table 6 provides a detailed comparison
of how the selected approaches fare regarding all the chosen
metrics.

Among these approaches, CTGAN and CopulaGAN excel as top
performers, consistently ranking among the best or second-best
across all metrics. Gaussian Copula also performs well, as its sta-
tistical nature, while potentially limiting fidelity and global rela-
tionship preservation, enhances privacy. AutoDiffusion emerges
as a strong contender among DMs, demonstrating good privacy
preservation results, ranking second in MDCR, achieving good
NNDR values, and exhibiting low HR and EIR. ForestDiffu-
sion shows less impressive results, with slightly above-average
performance in several metrics. TVAE presents mixed results
regarding privacy. While its NNDR is reasonable, its below-
average MDCR raises concerns. However, its above-average
HR and EIR values suggest moderate privacy preservation capa-
bilities. LLMs show below-average MDCR, NNDR, HR, and
EIR values, suggesting poor privacy preservation capabilities in
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their current form. SMOTE and ADASYN are among the worst
performers in most metrics due to their nearest-neighbor na-
ture, which limits diversity and tends to closely imitate original
dataset samples.

5.5 ML Utility

To assess the ML utility preserved in the generated datasets, we
adopted the Train on Synthetic and Test on Real (TSTR) [105]
approach. This methodology divides each dataset into training
and testing splits. Next, after the generation of synthetic data
based on the real training splits, we leverage the implemented
evaluators to test the generated synthetic datasets with real test-
ing data. Consequently, these evaluators are trained using their
corresponding synthetically oversampled versions. We utilized
the averages of five widely recognized metrics for each evaluator
to provide comprehensive insight into ML method performance
on the selected datasets: MCC, Accuracy, precision, recall, and
F-Score. To better address class imbalance issues, we calculated
macro and weighted averages for suitable metrics. Addition-
ally, to facilitate comparison across the numerous metrics and
methods, we provide the average rank for each method based on
the most relevant metrics for imbalanced data (MCC and macro
averages for precision, recall, and F-Score), as shown in Table 7.

The main conclusion we can draw from these results, is that DMs
possess the most ML utility and provide the best or second-best
results in almost all metrics, beating even the original dataset
in the majority of imbalanced metrics. In terms of the most
relevant results, ForestDiffusion shows an improvement of 0.06
in MCC, ~2.2 % in macro precision, ~4.9 % in macro recall, and
~2.9 % in macro F-Score. AutoDiffusion also beats the original
dataset in terms of MCC by 0.05, macro precision by ~0.2 %,
macro recall by ~5.3 %, and macro F-Score by ~2.9 %. TVAE
also presents good results, improving on the original dataset in
MCC but by a lesser margin 0.04, improving in terms of macro
recall by ~4.5 % and macro F-Score by ~1.6 %. Among GAN
methods, the best contender is CTAB-GAN, also improving
on the original dataset MCC by 0.03 and on macro recall by a
~5.4 % margin. LLMs demonstrate poor performance, failing
to improve upon the original dataset in any of the imbalanced
metrics. SMOTE and ADASYN perform well on average across
most metrics, but it is important to note that they did not obtain
the best results on a per-dataset basis.

Detailed ML utility metrics and further commentary to better
understand how each model behaves with each individual dataset
are given in the Appendix.

5.6 Discussion

The results from our study offer several insights into the use
of network-based generative models for synthetic tabular data
generation in imbalanced scenarios. The following paragraphs
outline the principal conclusions from our experimental analysis.

Computational Efficiency An overlooked topic in most of
the literature are the computational requirements for tabular
synthetic data generation methods. As we can see in the per-
formance results, some of them have excellent ML utility and
fidelity at the cost of high computational and time requirements.
ForestDiffusion illustrates this point well. While consistently
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Table 7: Average rank, MCC, accuracy, precision, recall, and F-Score for the tested methods and datasets. Best results are

highlighted in bold, second best are underlined.

Model Rank MCC Acc. Precision Recall F-Score
Weighted Macro Weighted Macro Weighted Macro
None 0.61 89.2% 88.0% 78.0% 89.2% 76.0% 882% 76.0%
SMOTE [13] 32 065 863% 889% 77.4% 86.3% 82.0% 87.0% 77.8%
ADASYN [14] 40 0.66 857% 89.0% 773% 857% 81.8% 86.4% 71.2%
TVAE [28] 50 0.65 86.8% 88.6% 77.5% 86.8% 80.5% 87.2% 77.6%
CTGAN [28] 82 0.63 862% 88.5% 76.1% 862% 79.8% 86.5% 75.9%
GaussianCopula [16] 92 062 873% 883% 77.1% 873% 784% 87.1% 75.7%
CopulaGAN [28] 75 063 863% 884% 769% 863% 79.6% 86.7% T6.2%
CTAB-GAN [29] 70 0.64 839% 87.7% 755% 839% 81.4% 84.6% 75.9%
CTAB-GAN+ [30] 9.0 062 83.0% 87.5% 73.8% 83.0% 812% 84.0% 74.4%
AutoDiffusion [32] 22 0.66 879% 88.8% 782% 879% 813% 88.1% 78.9%
ForestDiffusion [31] 25 0.67 87.5% 892% 802% 87.5% 809% 87.7% 718.9%
GReaT [33 130 045 71.7% 843% 63.8% 71.7% 73.7% 755% 62.2%
Tabula [34] 12.0 0.50 77.4% 83.5% 66.0% 774% 74.6% 79.6% 66.2%

outperforming other methods, it does so at a significant compu-
tational cost. Training with default parameters took a long time
and in terms of parallel training it required a high amount of
disk space. The tuning of this model for certain datasets proved
complicated due to its high computational cost. In general, DMs
and LLMs proved costly to train and tune, whereas AutoDif-
fusion, with its latent space approach to the diffusion problem,
proved less computationally expensive with certain configura-
tions. GANs occupied a middle ground in terms of training cost,
making them attractive for constrained resource environments,
due to their good results in privacy, fidelity, and ML utility tests.
Lastly, AEs generally demonstrated the lowest training and tun-
ing costs when choosing reasonable parameter configurations.
Local methods, like SMOTE or ADASYN, have proved to be
the cheapest option. However, their cheapness comes at a cost:
not preserving global relationships, data distribution distortion,
and privacy, three important factors.

Fidelity Regarding fidelity, DMs unequivocally have proven
superior performance. They excel in most marginal and joint
quantitative metrics and qualitative assessments. ForestDiffusion
consistently exhibits above-average performance across all tests,
demonstrating exceptional capacity for modeling continuous
variables and preserving global relationships within datasets.
While AutoDiffusion emerges as the leader in continuous-
categorical relationship preservation, its qualitative performance
is less robust, particularly in one of the chosen visual assess-
ments, the California Housing scatterplot. GANs have proven
acceptable quantitative performance, with CTAB-GAN+ stand-
ing out for its consistently strong results across all tested metrics,
albeit not being top-ranked. LLMs perform well quantitatively,
securing top scores in categorical feature relationship preserva-
tion and achieving above-average results in all metrics except
WD, but their qualitative performance is limited, often producing
unrealistic samples with noticeable artifacts. TVAE, representa-
tive of the AE architecture, exhibits middle-ground performance
in most metrics, but presents great results in categorical fidelity
measures and feature correlation preservation. Randomized
methods obtain results that at first glance seem good, perform-
ing well above average. However, closer inspection reveals that
this performance is achieved at the expense of privacy and di-

versity, as these methods fail to generate samples outside the
convex hull of neighboring points and tend to distort local distri-
butions. Conversely, probabilistic methods perform well when
modeling local numerical feature distributions but show subpar
performance in other metrics, achieving poor results regarding
feature correlation preservation.

Privacy GAN-based approaches, particularly CTGAN and
CopulaGAN, emerge as top performers. This strong perfor-
mance may be attributed to these methods incorporating tech-
niques to model marginal distributions (e.g., via copulas), inher-
ently adding a layer of abstraction from individual data points.
TVAE achieved moderately good results in most privacy met-
rics except MDCR, which exposes the inherent weakness of
AE architectures regarding privacy, memorization of records.
AE-based methods are prone to overfitting, potentially leading
to close reproduction of dataset records and compromising pri-
vacy. DMs provide a reasonable middle ground, with better
MDCR values, but on average close to AEs in terms of privacy
preservation. LLMs, however, demonstrate weaker performance
than DMs, with both tested models exhibiting below-average
results. A tailored fine-tuning process with a focus on privacy
might have improved these results, but such an investigation
falls outside the scope of this survey, which primarily focuses
on addressing class imbalance. Randomized methods lacking
explicit privacy-enhancing techniques perform poorly, as evi-
denced by the SMOTE and ADASYN results, obtaining most
of the worst results among the evaluated approaches. However,
probabilistic approaches, such as GaussianCopula, fare rela-
tively well regarding baseline privacy. This is likely because
they model marginal distributions separately and capture depen-
dencies explicitly. This modeling process inherently focuses
on aggregate properties and statistical relationships rather than
preserving fine-grained details of individual records.

It is important to note that for serious privacy requirements
involving sensitive data, dedicated techniques like Differential
Privacy [106] must be integrated into the training or generation
process of these methods. Our testing only reflects baseline
tendencies without advanced privacy guarantees.
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Figure 9: Box plots of all imbalanced metrics comparing the
performance of neural network-based approaches to classical
methods with key statistical measures highlighted for clarity.
These include the mean (slashed green line), median (orange
line), quartiles, and outliers. A positive skew is evident in all im-
balanced metrics for neural network-based methods, suggesting
better ML performance in imbalanced datasets versus traditional
methods.

ML utility When considering utility in our downstream task,
DMs again demonstrate exceptional performance, surpassing all
other methods and even the original datasets in most imbalanced
classification metrics and some general metrics like weighted
precision. While sometimes they fall short of SMOTE and
ADASYN in macro recall (expected due to the nearest-neighbor
nature of these methods), they outperform all other techniques
and the original baselines. TVAE, representing purely AE-based
architectures, emerges as the second-best performing family
of models, outperforming the original dataset in MCC, macro
recall, and macro F-score. GAN methods, led by CTAB-GAN,
secure the next best results, with CTAB-GAN surpassing the
original dataset in terms of MCC, macro recall, and macro
F-Score. However, other GAN methods show less favorable
results, although remaining competitive with the original dataset.
LLMs obtained the worst results, struggling to improve in any
imbalanced classification metric, trailing the original dataset
in machine learning utility by a significant margin. This sug-
gests that the tested LLMs, in their current form, may not be
well-suited for oversampling and mitigating class imbalance in
downstream tasks.

Fig. 9 provides box plots comparing the performance of classi-
cal and neural network-based methods. Neural network-based
methods present a positive skew, with superior median, average,
and positive outlier outcomes across all imbalanced metrics,
indicating better overall performance. Neural network-based
methods also exhibit better minimum results, suggesting greater
robustness and less susceptibility to overfitting. These results
highlight the ability of neural network-based methods to effec-
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Figure 10: Chart displaying the effectiveness of network-based
oversampling techniques across varying dataset sizes. A fitted
logarithmic curve highlights the underlying trend: as dataset
size decreases, the performance of synthetic data generation
techniques improves.

tively capture and represent the underlying structure of minority
classes while maintaining consistency with the overall data dis-
tribution, leading to more reliable performance in imbalanced
scenarios.

Results suggest that, in general, datasets that benefit the most
from synthetic data generation are the smallest ones, which
resulted in the highest ML utility gains. Fig. 10 depicts the
relationship between dataset size and the performance gains
achieved. It presents a scatter plot comparing the size of the
original datasets against the improvement in MCC attained by
the best-performing network-based synthetic data generation
methods. The plot illustrates a clear trend: smaller datasets
exhibit substantial gains in MCC, with improvements reaching
up to 0.3 in certain cases. As dataset size increases, the impact
of synthetic data generation on MCC becomes less pronounced,
eventually plateauing as the original dataset size becomes suf-
ficiently large. This observation aligns well with our expecta-
tions, the addition of synthetic samples to small datasets can
effectively augment training data, providing downstream models
with a more comprehensive representation of the underlying data
distribution, leading to improved generalization and enhanced
performance on the target task.

6 CONCLUSIONS

Synthetic tabular data generation has proven as a valuable al-
ternative for mitigating class imbalance issues. The application
of neural network-based approaches in this domain presents
distinct advantages over more traditional local methods. One
key advantage of neural networks is their ability to account for
the underlying data distribution, which leads to the generation
of more realistic and representative synthetic data. The utility of
synthetic data generation extends beyond just addressing class
imbalance; it is also highly effective for purposes such as dataset
anonymization and missing data imputation. These applications
are particularly relevant in scenarios where data privacy is a
concern or where incomplete datasets limit the effectiveness of
data analysis and model training.
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In our work, we have explored a wide range of state-of-the-art
techniques in the field of synthetic tabular data generation. Our
aim has been to provide guidelines, insights, and a deeper un-
derstanding of these advanced techniques. Traditionally, model
selection and parameter tuning for synthetic tabular data gen-
eration have been non-trivial processes. The development of
GenTab addresses this challenge by providing a user-friendly
library that offers a wide range of generation models with reason-
able default parameters, model selection, tuning, and evaluation.
We hope this library encourages and facilitates further efforts to-
wards synthetic tabular generation methods, and their systematic
evaluation.

Our findings indicate that DMs, specifically ForestDiffusion
and AutoDiffusion, offer the best synthetic tabular data gener-
ation alternative if high computational resources are available.
ForestDiffusion consistently excels across our tests, achieving
top or near-top performance in fidelity, privacy, and ML utility,
surpassing the original dataset in most imbalanced classification
metrics. In contrast, AEs and specific GAN architectures offer
energy-efficient alternatives due to their fast training and gen-
eration times. While DMs remain the clear choice for fidelity
and ML utility, AEs and some GAN models deliver commend-
able results, making them in fact feasible alternatives having
energy-efficiency in mind. Lastly, when privacy is of paramount
importance, GANs emerge as the top performers, the only in-
stance in which DMs have not bested all other methods.
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Table 8: MCC, accuracy, precision, recall, and F-Score for the tested methods in the Car Evaluation dataset.

Precision

Model MCC Acc.

Recall F-Score

Weighted Macro Weighted Macro Weighted Macro

None 0.74 98.8% 98.1% 855% 98.8% 88.1% 98.4% 86.8%
SMOTE [13] 0.88 98.9% 99.2% 903% 989% 98.6% 99.0% 93.7%
ADASYN [14] 0.89 989% 99.2% 90.7% 989% 98.6% 99.0% 93.9%
TVAE [28] 090 99.1% 99.3% 932% 991% 97.4% 99.2% 94.8%
CTGAN [28] 0.70 924% 982% 80.5% 924% 91.9% 944% 81.9%
GaussianCopula [16] 0.70 93.9% 982% 78.0% 93.9% 95.6% 954% 82.2%
CopulaGAN [28] 0.76 933% 98.6% 839% 933% 94.4% 952% 852%
CTAB-GAN [29] 0.73 955% 983% 81.8% 955% 93.5% 96.5% 84.5%
CTAB-GAN+ [30] 0.71 95.0% 982% 80.2% 95.0% 93.6% 96.1% 83.2%
AutoDiffusion [32] 0.89 99.0% 99.3% 91.6% 99.0% 982% 99.1% 94.2%
ForestDiffusion [31] 0.87 98.7% 99.1% 89.6% 98.7% 98.1% 989% 93.0%
GReaT [33] 0.20 52.5% 96.5% 54.0% 52.5% 753% 64.5% 40.6%
Tabula [34] 0.37 823% 96.7% 63.1% 823% 84.5% 874% 60.1%
TVAE CTGAN Gaussian Copula Copula GAN CTAB-GAN
|
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Figure 11: Heatmaps of the pair-wise correlation of the synthetic versus the original data in the Car Evaluation dataset. Pixels
represent the divergence between the synthetic and real feature correlations. Ideally, the synthetic data should have the same
correlation between features as the real data. This would be equivalent to a heatmap with all white. Lighter colors indicate that the
synthetic data is better at replicating the real data (lighter is better).

Appendix

A Car EvALuATION

We have evaluated the imbalanced version of the UCI Car Evalu-
ation dataset [99], composed exclusively of categorical features.
This dataset exhibits one of the highest imbalance ratios among
our selected datasets, providing a good testbed for synthetic data
generation methods.

ML Utility In the analysis presented in Table 8, TVAE stands
out by achieving an average MCC of 0.9, which surpasses the
real dataset by a wide margin, 0.16. Notably, AutoDiffusion,
SMOTE and ADASYN also show approximately the same result.
However, a deeper dive into metrics such as, accuracy, precision,
recall, and F-Score reveals that TVAE clearly outperforms other
selected methods. TVAE obtained the best results in the ma-
jority of metrics, except for macro recall, trailing SMOTE and
ADASYN by a small margin. Another relevant improvement
was achieved in the macro F-Score metric, specially impor-
tant for imbalanced datasets, where it has obtained a ~94.8 %,

yielding an advantage over the original dataset of ~8 %. AutoD-
iffusion closely followed TVAE, either tying or slightly trailing
in most metrics, again proving its effectiveness. A notable ob-
servation from this analysis is the inability of GAN and LLM
methods to surpass the original dataset in terms of MCC and
other relevant metrics.

Fidelity We opted for utilizing the original UCI Car Evalua-
tion dataset [24], which is strictly categorical and not binarized,
allowing us to more accurately assess the preservation of global
structure and better ascertain correlations among features. The
findings, presented in Fig. 11, highlight that DMs, particularly
AutoDiffusion, tend to outshine other methods when trying to
preserve global structure in categorical datasets. Interestingly,
LLM:s also show commendable performance in this context, in
contrast with the results obtained when using binarized data. Yet,
it is important to note that this superior performance in structure
preservation does not always translate into enhanced ML perfor-
mance, as we can see in previous results. TVAE, when not using
the binarized dataset, does quite poorly in terms of preserving
pair-wise correlations, together with CTGAN and CopulaGAN.
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Table 9: MCC, accuracy, precision, recall, and F-Score for the tested methods in the PlayNet dataset.

Precision

Model MCC Acc.

Recall F-Score

Weighted Macro Weighted Macro Weighted Macro

None 0.73 88.8% 89.3%

SMOTE [13] 0.68 82.2% 88.6%
ADASYN [14] 0.68 80.7% 88.9%
TVAE [28] 0.70 84.2% 88.7%
CTGAN [28] 0.72 88.5% 89.1%
GaussianCopula [16] 0.72 88.4% 89.1%
CopulaGAN [28] 0.71 86.4% 88.9%
CTAB-GAN [29] 0.69 84.6% 88.8%
CTAB-GAN+ [30] 0.64 80.8% 88.0%
AutoDiffusion [32] 0.72 88.2% 89.1%
ForestDiffusion [31] 0.70 83.5% 89.0%
GReaT [33] 0.68 82.4% 88.9%

Tabula [34] 0.67 82.5% 88.7%

78.4% 88.8% 823% 88.9% 79.7%
71.6% 822% 82.6% 84.4% 7T3.9%
723% 80.7% 82.4% 83.4% 72.9%
754% 842% 81.4% 859% 76.8%
76.6% 88.5% 81.9% 88.7% 78.3%
76.7% 88.4% 81.6% 88.7% 78.4%
749% 864% 822% 814% T11.5%
71.0% 84.6% 82.0% 862% 7T4.0%
65.7% 80.8% 81.0% 83.5% 68.3%
713% 882% 822% 88.5% 78.9%
76.0% 83.5% 829% 855% T117.5%
739% 82.4% 83.7% 84.7% 75.2%
71.7% 825% 82.6% 84.8% 72.8%
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Figure 12: Heatmaps of the pair-wise correlation of the synthetic data versus the original data in the PlayNet dataset. Pixels
represent the divergence between the synthetic and real feature correlations. Ideally, the synthetic data should have the same
correlation between features as the real data. This would be equivalent to a heatmap with all white. Lighter colors indicate that the
synthetic data is better at replicating the real data (lighter is better).

On the other hand, CTAB-GAN found a middle ground, per-
forming neither at the top nor at the bottom, while CTAB-GAN+
again faced difficulties when generating samples for minority
classes, failing to complete the task. In summary, DMs have
reasserted their dominance in preserving global-structure, show-
ing their capacity to maintain complex variable relationships,
rivaling LLMs in probably the most favorable dataset for them.
While their proficiency in structure preservation is evident, as
with the other datasets, it is important to recognize that this alone
does not guarantee superior ML utility.

B PLAYNET

The PlayNet dataset serves as a unique scenario for evaluating
generative models, given its composition, which includes player
positions and velocities in the game court. Due to the nature of
this dataset, we provide additional data compared to others.

ML Utility Our findings, as detailed in Table 9, indicate that in
the context of the PlayNet dataset, synthetic data did not outper-
form the real dataset across most ML utility metrics. The meth-

ods that came close to the performance of the original dataset
regarding MCC were AutoDiffusion, CTGAN, and Gaussian-
Copula, all trailing the baseline MCC by a narrow margin of just
0.01. Notably, GReaT managed to outperform the real dataset in
terms of macro recall, with a ~83.7 %, surpassing by a ~1.4 %
the baseline number. LLM methods struggled, apart from the
aforementioned exception. The inherent structure of LLMs,
optimized for tokenizing and processing textual information, en-
counters challenges with numerical data due to the tokenization
overhead and the repetitive nature of the data. These properties
pose a big overhead when tokenizing rows and performing infer-
ence, due to each column consuming a high amount of tokens,
as patterns are seldom repeated. These results coupled with the
consistent increase in recall performance for several models,
show that even in unfavourable scenarios, synthetic datasets
can be beneficial for decreasing the number of cases in which
downstream models miss scarce situations. Conversely, while
demonstrating acceptable performance, SMOTE and ADASYN
exhibited reduced effectiveness compared to network-based ap-
proaches.
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Fidelity In Fig. 12, the cross-correlation chart reveals the ef-
fectiveness of ForestDiffusion when preserving global feature
relationships in this dataset. Conversely, AutoDiffusion exhibits
the weakest performance, with several variables failing to main-
tain correlations present in the original dataset. Interestingly,
Tabula, while demonstrating a high level of preserved correla-
tion, underperforms AutoDiffusion in almost every ML utility
metric. These results suggest that a high level of correlation
does not necessarily guarantee improved ML performance, as
we saw in the previous dataset.

Furthermore, Fig. 13 depicts randomly chosen real game situa-
tions alongside the synthetic samples generated by each method.
Since the dataset samples equate to real positions and veloci-
ties in a handball arena, this visualization allows us to analyze
player positions and velocities from a qualitative perspective,
complementing our quantitative evaluations. Consistent with the
prior heatmap analysis, ForestDiffusion exhibits the strongest
performance, accurately depicting player positions and veloc-
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ities across most game situations. Conversely, AutoDiffusion
displays the most significant deviations from realistic player data.
GReaT merits particular attention, as it visually replicates player
behavior well in most situations, with the exception of a player
exhibiting unrealistic speed during a penalty. Several methods,
including ForestDiffusion, GReaT, and Tabula, generate visually
plausible player positions and velocities during timeouts, accu-
rately reflecting the lack of player movement in such situations.
Transitions reveal a broader range of methods achieving visually
plausible outcomes, including CTAB-GAN, ForestDiffusion,
and GReaT. Accurately depicting attack scenarios remains one
of the most challenging tasks, yet ForestDiffusion and GReaT
appear to generate the most realistic player dynamics. Penalties
pose significant challenges for all methods, with ForestDiffu-
sion emerging as the most plausible, although GReaT presents
a potentially viable alternative if not for a few unnatural player
positions and velocities as mentioned above.
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Figure 13: Comparison of court snapshots of the real and synthetic handball situations for each model trained with the PlayNet
dataset. Player positions are represented by blue dots and velocities by orange arrows, representing player dynamics. ForestDiffu-
sion demonstrates the most accurate replication of real game situations, while AutoDiffusion, CTAB-GAN, and CTAB-GAN+
exhibit the weakest performance, with unrealistic player speeds and positions.
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The UCI Adult dataset, characterized by its diverse features,
provides an ideal opportunity to assess the performance of LLM
methods. While these methods performed well, they did not
demonstrate a clear outperformance over other models. This
outcome suggests that while LLMs are promising in handling
varied data types, their effectiveness can be context-dependent
and may not always translate to superior performance in every
scenario.

ML Utility The analysis of the UCI Adult dataset (see Ta-
ble 10) reveals that several synthetic datasets achieved com-
parable or superior performance to the real dataset in terms
of MCC. The CTAB-GAN family of models emerged as top
performers, achieving an MCC of 0.59, an improvement of
0.02 over the real dataset. Additionally they boast the highest
weighted precision ~85.6 %, surpassing the original data by
~0.4 %. GaussianCopula also performed well in this dataset,
particularly in F-Score, exceeding the real dataset in macro and
weighted scores. It achieved a weighted F-Score of ~85 % and a
macro F-Score of ~78.7 %, representing a ~0.7 % and a ~1.6 %
improvement respectively. DMs and LLMs demonstrated com-
petitive performance, matching the original dataset in MCC and
even surpassing it in certain metrics, such as macro recall and
macro F-score.

Fidelity Regarding the preservation of global relationships
within the data, CTAB-GAN variants, and AutoDiffusion have
emerged as the most effective in our tests, this is depicted in the
provided cross-correlation chart (see Fig. 14). Tabula presents
a compelling example, illustrating that strong preservation of
global relationships does not necessarily improve ML utility.
Despite showing good results in global relationship preservation,
its ML utility did not surpass that of GReaT, which, although
obtaining slightly weaker fidelity results, outperformed it. Con-
versely, methods such as TVAE, CTGAN, or CopulaGAN dis-
played weaker performance, as seen in their respective heatmaps.
In these instances, it translated into less favorable outcomes in
ML utility tests. These results suggest that fidelity is sometimes
not indicative of ML utility, and that results may vary across
different generative models and use cases, highlighting the im-
portance of proper model selection and tuning for maximizing

25

ML utility.

D EcoLl

The Ecoli dataset, with its limited sample size, provides a valu-
able testbed for evaluating the efficacy of synthetic data gen-
eration methods in data-scarce scenarios. As anticipated, this
dataset highlights the strengths of network-based oversampling
techniques, which demonstrate superior performance in aug-
menting limited data and improving downstream model accuracy.
Moreover, its biological context offers a unique opportunity to
assess the applicability of these methods in a domain where data
scarcity is often a significant challenge.

ML Utility Table 11 presents the results for this dataset. DMs,
particularly ForestDiffusion, again proved to have exceptional
performance when enhancing imbalanced datasets. ForestDif-
fusion surpasses all other methods across almost every metric,
achieving a remarkable MCC score of 0.75 (a 0.31 improvement
over the original dataset) and a macro F-score of approximately
~87.2% (a ~16.3 % improvement). Notably, ForestDiffusion
even outperforms the original dataset in some non-imbalanced
metrics. TVAE, representing AE-based methods, secures the
second position but trails ForestDiffusion considerably. Nev-
ertheless, it still improves upon the original dataset’s MCC by
0.21 and macro F-score by approximately ~9.8 %. GANs and
LLMs also surpass the original dataset in imbalanced metrics,
along with local methods like SMOTE and ADASYN, reinforc-
ing the observation that synthetic data generation is particularly
effective for smaller datasets.

Fidelity Fig. 15 presents cross-correlation heatmaps, illus-
trating the ability of surveyed models to capture underlying
relationships within the data. Tabula demonstrates the closest
resemblance to the original dataset’s correlation structure, in
this instance translating into improved ML performance. AutoD-
iffusion closely follows, also effectively capturing underlying
variable relationships and obtaining low correlation distances.
ForestDiffusion, consistent with its strong performance across
datasets, maintains good results with low divergence in pair-
wise correlations, although not the best in this case. AE based
methods also perform well, although some loss of correlation

Table 10: MCC, accuracy, precision, recall, and F-Score for the tested methods in the Adult dataset.

Precision

Model MCC Acc.

Recall F-Score

Weighted Macro Weighted Macro Weighted Macro

None 0.57 85.6% 85.2%

SMOTE [13] 0.57 83.2% 84.7%
ADASYN [14] 0.57 81.2% 85.0%
TVAE [28] 0.57 83.6% 84.7%
CTGAN [28] 0.58 82.7% 85.0%
GaussianCopula [16] 0.58 85.5% 85.0%
CopulaGAN [28] 0.57 81.9% 84.6%
CTAB-GAN [29] 0.59 83.9% 85.4%
CTAB-GAN+ [30] 0.59 83.2% 85.6%
AutoDiffusion [32] 0.57 82.3% 84.7%
ForestDiffusion [31] 0.57 84.7% 84.6%
GReaT [33] 0.57 832% 84.4%

Tabula [34] 0.57 82.3% 84.6%

82.9% 85.6% 752% 843% T7.1%
788% 832% 18.4% 83.5% T1.9%
762% 812% 81.1% 822% 773%
787% 83.6% 189% 83.8% T783%
778% 827% 80.1% 833% 78.1%
81.5% 855% 77.0% 85.0% 78.7%
764% 819% 80.4% 82.7% 71.5%
798% 839% 792% 84.1% T78.6%
79.7% 832% 79.4% 83.5% 782%
76.8% 823% 803% 83.0% 77.8%
804% 84.7% 76.8% 843% 78.1%
71.5% 832% 793% 83.6% 78.1%
771% 823% 79.7% 82.9% 77.6%
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Figure 14: Heatmaps of the pair-wise correlation of the synthetic data versus the original data in the Adult dataset. Pixels represent
the divergence between the synthetic and real feature correlations. Ideally, the synthetic data should have the same correlation
between features as the real data. This would be equivalent to a heatmap with all white. Lighter colors indicate that the synthetic
data is better at replicating the real data (lighter is better).

Table 11: MCC, accuracy, precision, recall, and F-Score for the tested methods in the Ecoli dataset.
Precision Recall F-Score

Weighted Macro Weighted Macro Weighted Macro

None 044 933% 89.5% 72.0% 933% 70.4% 91.3% 70.9%

SMOTE [13] 0.61 90.1% 93.5% 763% 90.1% 863% 91.1% 79.0%
ADASYN [14] 0.62 903% 93.7% 77.0% 903% 86.4% 913% 79.5%
TVAE [28] 0.65 90.6% 942% 77.4% 90.6% 88.8% 91.7% 80.7%
CTGAN [28] 0.62 89.6% 93.7% 759% 89.6% 87.5% 90.8% 78.9%
GaussianCopula [16] 059 94.5% 924% 80.6% 94.5% 71.7% 933% 78.8%
CopulaGAN [28] 0.60 91.1% 933% 79.0% 91.1% 825% 91.5% 78.2%
CTAB-GAN [29] 047 857% 91.1% 68.4% 857% 802% 87.4% 71.0%
CTAB-GAN+ [30] 039 832% 89.7% 643% 832% 76.6% 854% 66.8%
AutoDiffusion [32] 0.60 90.4% 93.1% 758% 90.4% 85.1% 91.3% 78.6%
ForestDiffusion [31] 0.75 951% 954% 87.0% 951% 87.7% 952% 87.2%
GReaT [33] 038 73.1% 90.7% 62.2% 73.1% 79.1% 783% 61.4%

Tabula [34] 0.54 862% 92.6% 712% 862% 84.9% 882% 74.0%

Model MCC Acc.

TVAE CTGAN Gaussian Copula Copula GAN CTAB-GAN

0.8

m “m

CTAB-GAN+ AutoDiffusion ForestDiffusion GReaT Tabula _0.4
-0.2

-0.0

Figure 15: Heatmaps of the pair-wise correlation of the synthetic versus the original data in the Ecoli dataset. Pixels represent the
divergence between the synthetic and real feature correlations. Ideally, the synthetic data should have the same correlation between
features as the real data. This would be equivalent to a heatmap with all white. Lighter colors indicate that the synthetic data is
better at replicating the real data (lighter is better).
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Table 12: MCC, accuracy, precision, recall, and F-Score for the tested methods in the Sick Euthyroid dataset.

Precision

Model MCC Acc.

Recall F-Score

Weighted Macro Weighted Macro Weighted Macro

None 0.65 95.5% 94.0% 802% 95.5% 84.0% 94.7% 82.0%
SMOTE [13] 0.67 88.4% 953% 79.0% 88.4% 89.9% 90.3% 80.6%
ADASYN [14] 0.67 86.8% 95.5% 79.4% 86.8% 89.5% 88.9% 79.9%
TVAE [28] 0.64 89.9% 94.5% 780% 89.9% 87.4% 91.4% 80.3%
CTGAN [28] 0.64 854% 948% 77.6% 854% 869% 814% 71.7%
GaussianCopula [16]  0.63 84.4% 949% 75.6% 84.4% 88.6% 86.6% 76.4%
CopulaGAN [28] 0.67 904% 94.8% 80.6% 90.4% 873% 91.8% 82.0%
CTAB-GAN [29] 0.57 809% 94.2% 73.6% 809% 84.6% 82.8% 72.4%
CTAB-GAN+ [30] 0.59 82.0% 94.5% 73.8% 82.0% 87.0% 84.1% 73.8%
AutoDiffusion [32] 0.70 95.1% 95.0% 84.4% 95.1% 85.6% 95.0% 84.9%
ForestDiffusion [31] 0.65 86.9% 952% 77.6% 869% 89.5% 89.1% 78.9%
GReaT [33] 043 772% 92.0% 64.6% 772% 81.7% 81.3% 65.0%
Tabula [34] - - - - - - - -
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Figure 16: Heatmaps of the pair-wise correlation of the synthetic versus the original data in the Sick Euthyroid dataset. Pixels
represent the divergence between the synthetic and real feature correlations. Ideally, the synthetic data should have the same
correlation between features as the real data. This would be equivalent to a heatmap with all white. Lighter colors indicate that the
synthetic data is better at replicating the real data (lighter is better). Methods denoted by a red cross (X) were unable to generate a

sufficient number of samples for the target classes.

is evident. In contrast, GAN-based methods struggle with this
dataset, yielding suboptimal results in capturing and preserving
data dependencies.

E Sick EutHYROID

As our first medical dataset, Sick Euthyroid provides a repre-
sentative example of disease diagnosis scenarios. Its small size
and relatively high imbalance ratio are characteristic of medical
datasets, particularly those related to thyroid gland disorders.
This dataset allows us to evaluate how effectively generative
models address challenges specific to the medical domain, where
accurate classification of rare conditions is crucial.

ML Utility Table 12 presents the results for the Sick Euthyroid
dataset. AutoDiffusion emerges as the clear winner, outperform-
ing all other models in MCC and F-score, further solidifying
the strong performance of Diffusion Models. It achieves a 0.05
lead in MCC and a ~2.9 % lead in macro F-score. CopulaGAN,
SMOTE, and ADASYN follow with the second-best results,

with SMOTE and ADASYN excelling in macro recall, achiev-
ing a lead of up to ~5.9 %. LLMs, however, struggle with this
dataset, with Tabula failing to generate samples and GReaT
underperforming the original data.

Fidelity Fig. 16 depicts the pairwise correlation distances be-
tween the original and synthetic dataset, providing insights into
the ability of different generative models for preserving vari-
able relationships. GReaT achieves the best performance in this
assessment, closely replicating the correlation structure of the
original data. However, this fidelity does not directly translate
to superior performance in oversampling for ML utility, where
GReaT did not perform well. CTAB-GAN+ also demonstrates
strong performance in preserving variable relationships. In con-
trast, some other GAN-based methods (CTGAN and Copula-
GAN) and GaussianCopula exhibit weaker performance, notably
deviating from the original dataset’s correlation structure.
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Table 13: MCC, accuracy, precision, recall, and F-Score for the tested methods in the California Housing dataset.

Precision

Model MCC Acc.

Recall F-Score

Weighted Macro Weighted Macro Weighted Macro

None 046 57.5% 549% 519% 575% 488% 55.1% 49.0%

SMOTE [13] 045 54.6% 558% 502% 54.6% 53.6% 54.0% 50.6%
ADASYN [14] 045 558% 56.1% 51.8% 558% 50.1% 54.1% 47.6%
TVAE [28] 0.45 57.0% 534% 491% 57.0% 472% 541% 46.9%

CTGAN [28] 045 57.1% 53.5% 49.7% 57.1% 47.0% 54.0% 46.9%
GaussianCopula [16] 0.44 56.6% 53.5% 49.6% 56.6% 46.5% 53.8% 46.6%
CopulaGAN [28] 045 56.8% 53.0% 48.6% 56.8% 46.4% 53.6% 46.0%
CTAB-GAN [29] 047 574% 57.4% 54.6% 574% 513% 56.4% 51.5%
CTAB-GAN+ [30] 0.47 57.7% 572% 53.7% 577% 51.7% 56.5% 51.4%
AutoDiffusion [32] 0.44 542% 55.6% 489% 542% 51.9% 53.9% 49.2%
ForestDiffusion [31] 0.46 56.5% 56.0% 522% 56.5% 502% 54.8% 49.6%
GReaT [33] 040 479% 48.4% 43.7% 479% 46.0% 479% 44.5%

Tabula [34] 041 48.1% 48.6% 44.0% 48.1% 458% 48.1% 44.5%
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Figure 17: Heatmaps of the pair-wise correlation of the synthetic versus the original data in the California Housing dataset. Pixels
represent the divergence between the synthetic and real feature correlations. Ideally, the synthetic data should have the same
correlation between features as the real data. This would be equivalent to a heatmap with all white. Lighter colors indicate that the
synthetic data is better at replicating the real data (lighter is better).

F CavrrorNnia HousiNg

The California Housing dataset, derived from the 1990 US Cen-
sus, offers a unique and valuable opportunity to assess the ca-
pabilities of synthetic data generation methods beyond typical
tabular datasets. It provides median house values for California
districts in hundreds of thousands of dollars ($100 000), but it
also includes geographic information in the form of latitude
and longitude coordinates. This spatial component allows for
a deeper evaluation of generative models, testing their ability
to not only reproduce individual feature distributions but also
to capture the complex spatial relationships and dependencies
inherent in real-world geographical data.

ML Utility Table 13 presents the results for the California
Housing dataset. The CTAB-GAN family of models obtained
the best performance, achieving a 0.01 increase in MCC, a
~2.7 % increase in macro precision, and a ~2.5 % increase
in macro F-score over the original dataset. SMOTE leads in
macro recall, surpassing the original dataset by ~4.8 %. Despite
strong fidelity performance, DMs show less impressive results
in oversampling, only marginally exceeding the original dataset

in macro recall, precision, and F-score. AEs, represented by
TVAE, and LLMs underperformed across all metrics.

Fidelity Fig. 17 illustrates the pairwise correlation distances
between the original California Housing dataset and the syn-
thetic datasets generated by the chosen models. ForestDiffusion
demonstrates exceptional performance, accurately capturing
the correlation structure of the original data and reinforcing its
strong results observed in the main paper’s scatterplot of price
versus latitude and longitude. If we account for the ML util-
ity results, we can see that the high fidelity does not translate
into good data augmentation performance, probably due to not
having enough differences between datasets for capturing new
unseen data patterns. AutoDiffusion also performs well, with
only minor discrepancies in two pairs of variables. These results
reinforce that in terms of fidelity, DMs are the best option. In
contrast, other models struggle to effectively preserve variable
relationships. This is particularly evident in LLMs, which, de-
spite capturing some geographical relationships well, exhibit
significant deviations in other pair-wise correlations. GAN mod-
els struggle the most to maintain accurate correlations. AEs,
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Table 14: MCC, accuracy, precision, recall, and F-Score for the tested methods in the Mushroom dataset.

Precision

Model MCC Acc.

Recall F-Score

Weighted Macro Weighted Macro Weighted Macro

None 096 98.0% 98.1% 98.1% 98.0% 97.9% 97.9% 97.9%
SMOTE [13] 098 99.0% 99.0% 99.0% 99.0% 99.0% 99.0% 99.0%
ADASYN [14] 097 982% 983% 983% 982% 982% 98.2% 982%
TVAE [28] 098 99.1% 991% 991% 991% 991% 991% 99.1%
CTGAN [28] 097 98.6% 98.6% 98.6% 98.6% 98.6% 98.6% 98.6%
GaussianCopula [16] 097 98.6% 98.6% 98.7% 98.6% 98.6% 98.6% 98.6%
CopulaGAN [28] 097 98.7% 98.7% 98.7% 98.7% 98.7% 98.7% 98.7%
CTAB-GAN [29] 098 99.0% 99.0% 99.0% 99.0% 99.0% 99.0% 99.0%
CTAB-GAN+ [30] 098 99.0% 99.0% 99.0% 99.0% 99.0% 99.0% 99.0%
AutoDiffusion [32] 097 98.7% 98.7% 98.7% 98.7% 98.7% 98.7% 98.7%
ForestDiffusion [31] 0.97 98.6% 98.6% 98.6% 98.6% 98.6% 98.6% 98.6%
GReaT [33] 0.80 79.8% 79.8% 798% 79.8% 79.8% 79.8% 79.8%
Tabula [34] 0.80 80.0% 80.0% 80.0% 80.0% 80.0% 80.0% 80.0%
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Figure 18: Heatmaps of the pair-wise correlation of the synthetic versus the original data in the Mushroom dataset. Pixels
represent the divergence between the synthetic and real feature correlations. Ideally, the synthetic data should have the same
correlation between features as the real data. This would be equivalent to a heatmap with all white. Lighter colors indicate that the
synthetic data is better at replicating the real data (lighter is better).

and by extension TVAE, obtain reasonable performance when
preserving variable relationships.

G MusHrOOM

This dataset describes hypothetical samples representing 23
species of gilled mushrooms from the Agaricus and Lepiota
Family. Each species is classified as edible or poisonous. As
the Guide emphasizes, there is no simple rule for determining
mushroom edibility, unlike the straightforward identification
of Poisonous Oak and Ivy. This dataset comprises exclusively
categorical features, each representing a distinct morphological
characteristic of the mushrooms. These features can be used to
predict the edibility of the mushroom.

ML Utility Table 14 presents the results for the Mushroom
dataset. Despite the lack of straightforward rules for determining
edibility, downstream classifiers achieved high performance.
TVAE and the CTAB-GAN family of models emerged as the top
performers. Notably, TVAE surpassed the original dataset and
all other methods across all metrics, demonstrating gains of 0.02

in MCC, ~1 % in macro precision, ~1.2 % in macro recall, and
~1.2 % in macro F-score. DMs and GANs also outperformed the
original dataset, albeit with smaller margins. LLMs, however,
struggled with this dataset, again underperforming the original
dataset across all metrics. These results further reinforce the
observation that LLMSs, in their current form, may not be the
most effective approach for oversampling and addressing class
imbalance in downstream tasks.

Fidelity Fig. 18 displays the correlation heatmaps for the
Mushroom dataset, revealing interesting insights into the rela-
tionship between fidelity and oversampling performance. LLMs
and AutoDiffusion demonstrate strong fidelity, closely replicat-
ing the correlation structure of the original data. However, this
high fidelity does not translate to optimal oversampling perfor-
mance, suggesting that excessive adherence to the original data
distribution may limit the diversity and effectiveness of synthetic
samples for data augmentation. TVAE achieves middle-ground
performance regarding fidelity, neither perfectly replicating nor
significantly deviating from the original correlations. This sug-
gests that a moderate level of fidelity may be more effective
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Table 15: MCC, accuracy, precision, recall, and F-Score for the tested methods in the Oil dataset.

Model MCC Acc.

Precision

Recall

F-Score

Weighted Macro Weighted Macro Weighted Macro

30

None 0.34 962% 948% 750% 962% 61.2% 952% 65.0%
SMOTE [13] 039 943% 953% 74.1% 943% 67.7% 94.5% 67.7%
ADASYN [14] 039 94.0% 953% 73.1% 94.0% 682% 944% 67.9%
TVAE [28] 031 90.9% 94.6% 692% 909% 63.9% 922% 63.7%
CTGAN [28] 035 95.1% 949% 72.0% 951% 64.7% 94.9% 66.8%
GaussianCopula [16] 035 96.2% 95.0% 759% 962% 61.9% 953% 65.8%
CopulaGAN [28] 034 91.7% 951% 72.8% 91.7% 649% 92.7% 64.1%
CTAB-GAN [29] - - . - . - - -
CTAB-GAN+ [30] - - - - - - - -
AutoDiffusion [32] 0.39 952% 95.1% 71.8% 952% 68.1% 95.1% 69.1%
ForestDiffusion [31] 0.40 96.3% 95.5% 80.6% 96.3% 633% 95.5% 68.0%
GReaT [33] 0.16 77.8% 93.5% 54.6% 71.8% 645% 83.7% 52.7%
Tabula [34] 0.17 80.6% 93.6% 552% 80.6% 64.6% 857% 54.4%
TVAE Gaussian Copula Copula GAN CTAB-GAN
= 2 1.0
: ]
- - I ; : 0.8
: : " .-_I ] m e .

AutoDiffusion

CTAB-GAN+

- 0.6
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Figure 19: Heatmaps of the pair-wise correlation of the synthetic versus the original data in the Qil dataset. Pixels represent the
divergence between the synthetic and real feature correlations. Ideally, the synthetic data should have the same correlation between
features as the real data. This would be equivalent to a heatmap with all white. Lighter colors indicate that the synthetic data is
better at replicating the real data (lighter is better). Methods denoted by a red cross (X) were unable to generate a sufficient number

of samples for the target classes.

for oversampling, allowing for sufficient creativity when gener-
ating synthetic samples while still respecting underlying data
relationships. Conversely, the poorest performing models in
terms of fidelity (CTGAN, CopulaGAN, GaussianCopula, and
ForestDiffusion) exhibit significant deviations from the original
correlations. This can lead to the generation of unrealistic and
potentially misleading synthetic data, hindering the effectiveness
of oversampling. However, in this specific case, the impact of
poor fidelity on overall performance is less pronounced, likely
due to the relatively simple variable relationships within the
Mushroom dataset.

H Own

This dataset, representing the environmental domain, is the most
imbalanced in our study. It originates from satellite images of
the ocean, categorized into those with and without oil spills.
These images were segmented and processed using computer
vision algorithms to extract descriptive feature vectors for each
image section. The task is to classify image patches as ‘Oil

Spill” (positive, minority class) or ‘Non-spill’ (negative, major-
ity class) based on these features. This represents a real-world
problem: detecting oil spills, whether from illegal dumping or
accidents, which pose significant environmental threats. The
high class imbalance, however, presents a challenge for tradi-
tional machine learning models, potentially hindering accurate
oil spill detection.

ML Utility Table 15 presents the results for the Oil Spill
dataset, which, as evidenced by the low MCC scores, poses
a significant challenge for ML models. DMs again demon-
strate strong performance, outperforming the original dataset in
most metrics. Notably, ForestDiffusion achieves a 0.06 improve-
ment in MCC, a ~5.6 % increase in macro precision, a ~2.1 %
increase in macro recall, and a ~3 % improvement in macro
F-score. While local methods like SMOTE and ADASYN attain
the highest macro recall (a ~7 % improvement), AutoDiffusion
secures the best macro F-score with a ~4.1 % improvement.
Interestingly, the CTAB-GAN family of models encounters dif-
ficulties generating samples for this dataset.
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Fidelity Fig. 19 displays pair-wise correlation distances, of-
fering insights into the ability of different models to preserve
variable relationships in this dataset. LLMs demonstrate strong
fidelity, achieving low correlation distances, yet this again does
not translate into superior oversampling performance. AEs and
DMs also performed well, closely trailing LLMs, presenting
good cross-correlations. Conversely, GAN-based methods strug-
gled to reproduce variable relationships accurately (or in some
instances not being able to generate correct samples), potentially
hindering their effectiveness, which, in this case, negatively im-
pacts oversampling performance. As previously noted, while
some deviation from the original data distribution can be ben-
eficial for generating diverse synthetic samples, a failure to
reasonably reproduce correlations can hinder the effectiveness
of oversampling.
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